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Abstract 
Background: The RTK-VEGF4 receptor family, which includes VEGFR-1, VEGFR-2, and VEGFR-3, plays a cru-
cial role in tissue regeneration by promoting angiogenesis, the formation of new blood vessels, and recruiting stem 
cells and immune cells. Machine learning, particularly graph neural networks (GNNs), has shown high accuracy in 
predicting these interactions. This study aims to predict drug-gene interactions of the RTK-VEGF4 receptor family 
in periodontal regeneration using graph neural networks.
Material and Methods: The study utilized a dataset comprising 19,154 drug-gene interactions to analyze the rela-
tionships between drugs and protein-coding genes. The dataset was split into training and testing sets, with 80% 
of the data used for training and 20% for testing. Cytoscape, an open-source software platform, was employed to 
visualize and analyze the drug-gene interaction network, and CytoHubba, a plugin, was used to identify highly con-
nected nodes. Topological measures were applied to determine the influence and importance of each node. GNNs 
were used to manage the complex relationships and dependencies within the graphs.
Results: The drug-gene interaction network, comprising 815 nodes and 13,436 edges, was found to be complex and 
highly interconnected. It was divided into 11 components, displaying low density and heterogeneity, indicative of 
a sparse structure. The GNN model achieved 97% accuracy in predicting interaction types, including single protein 
interactions and protein complex groups.
Conclusions: The study demonstrates that graph neural networks outperform traditional machine learning methods 
in predicting drug-gene interactions within the RTK-VEGF protein family in periodontal regeneration, highlighting 
their potential in advancing therapeutic strategies and drug discovery.
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Introduction
The RTK-VEGF4 receptor family, comprising VEG-
FR-1, VEGFR-2, and VEGFR-3, is vital for tissue re-
generation (1,2). VEGFR-1 facilitates angiogenesis by 
forming new blood vessels and recruiting stem cells and 
immune cells. VEGFR-2 promotes new blood vessel 
growth and wound healing through angiogenesis, whi-
le VEGFR-3 is crucial for lymphangiogenesis, forming 
new lymphatic vessels essential for efficient tissue re-
pair. Manipulating these receptors can enhance tissue 
regeneration and repair outcomes (3).
Periodontal regeneration involves activating the 
RTK-VEGF4 receptor family to promote angiogenesis. 
VEGFR-1, expressed on endothelial cells, stimulates 
new blood vessel formation, providing oxygen, nu-
trients, and immune cells to regenerate damaged teeth. 
VEGFR-2, the primary receptor in VEGF-induced an-
giogenesis, supports endothelial cell survival and vascu-
lar permeability, facilitating regeneration (4). VEGFR-3 
regulates lymphangiogenesis, aiding in the clearance of 
inflammatory molecules and promoting a more efficient 
healing response. Vascular Endothelial Growth Factors 
(VEGFs) regulate angiogenesis by binding to VEGFRs 
and coreceptors. VEGFRs, along with VEGF-A and C, 
play roles in lymphatic system formation, with VEG-
FR-3 and its ligands having both angiogenic and lym-
phangiogenic effects (5).
The VEGF receptor family is essential for periodontal 
regeneration by promoting angiogenesis, vasculogene-
sis, and lymphangiogenesis. These processes are crucial 
for forming new blood vessels and delivering nutrients 
and oxygen to tissues. VEGF-A, a member of the VEGF 
ligand family, is upregulated in periodontal wound hea-
ling, binding to VEGFR-2 (6,7), the primary VEGF 
receptor in endothelial cells. Other VEGF receptors, 
such as VEGFR-1 and VEGFR-3, also contribute to pe-
riodontal regeneration. Therapeutic strategies targeting 
these receptors may enhance periodontal regeneration.
Drug-gene interactions (8,9) involve the interplay be-
tween drugs and specific genes in the biological pa-
thways targeted by the drug. For the RTK-VEGF4 
receptor family, drugs can modulate the activity or ex-
pression of these receptors, influencing angiogenesis 
and periodontal regeneration. Therapeutic agents targe-
ting this pathway include anti-angiogenic drugs, such as 
monoclonal antibodies or tyrosine kinase inhibitors, that 
inhibit VEGF signaling and limit angiogenesis (10,11). 
Conversely, gene therapy approaches aim to enhance 
RTK-VEGF4 receptor family signaling by introducing 
genes encoding these receptors or their ligands, poten-
tially promoting tissue regeneration in periodontal di-
sease. Understanding drug-gene interactions within the 
RTK-VEGF4 receptor family is crucial for developing 
effective therapeutic strategies to enhance periodontal 
regeneration outcomes.

By collecting data, extracting features, and training mo-
dels, machine learning accurately predicts drug-gene in-
teractions, which is crucial for drug discovery, persona-
lized treatment, and understanding the molecular basis 
of diseases. Graph neural networks (GNNs) (12) are a 
popular method for predicting drug-gene interactions. 
These networks handle graph-structured data, represen-
ting entities like drugs and genes as nodes and modeling 
their interactions using graph edges. The GNN model 
updates hidden representations by aggregating informa-
tion from neighboring nodes and can be trained using 
a supervised learning approach with known drug-gene 
interactions as labels. GNNs have shown promising re-
sults in predicting drug-gene interactions, although they 
require careful feature engineering and can be computa-
tionally expensive.
Our study aims to use Graph Neural Network Prediction 
to analyze Drug-Gene Interactions of the RTK-VEGF4 
Receptor Family in periodontal regeneration.

Material and Methods
-Dataset Preparation:
The study utilized a dataset of 19,154 drug-gene inte-
ractions sourced from https://www.probes-drugs.org/ to 
analyze drug-protein gene interactions (13). Annotation 
and preprocessing steps involved assigning information 
and labels to nodes, classifying them as drugs or genes, 
and defining interactions as edges. Additional features 
such as biochemical activity and drug-gene interaction 
type were incorporated. Outliers were removed to en-
sure data quality. The dataset was then divided into trai-
ning and testing sets, with 80% allocated for training and 
20% for testing.
-Cytoscape and CytoHubba:
Cytoscape (14), an open-source software platform, was 
used to visualize and analyze the drug-gene interaction 
network. Nodes in the dataset represented drugs and ge-
nes, while edges depicted their interactions. Cytoscape 
provided various layout algorithms for effective visuali-
zation. Built-in tools and plugins were utilized to calcu-
late network properties, identify key genes, and perform 
topological analysis. CytoHubba, a plugin, was emplo-
yed to identify highly connected nodes. Topological 
measures determined the influence and importance of 
each node. Customizable visualizations highlighted key 
genes and drugs, and results were exported as network 
images, tables, and statistical measures.
-Graph Neural Network Architecture:
A Graph Neural Network (GNN) (15) consists of mul-
tiple layers, each performing message passing and node 
update operations. This iterative process refines node 
representations by incorporating information from nei-
ghboring nodes. The input layer is a graph with nodes 
that have associated features. Message passing involves 
nodes exchanging messages with their neighbors, which 
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are then aggregated to represent the node’s neighbor-
hood. The aggregation function determines how these 
messages are combined. Node update involves updating 
the node’s representation based on the aggregated infor-
mation.
GNNs are neural network models designed to operate on 
graph-structured data, making them popular for hand-
ling complex relationships and dependencies in graphs. 
GNNs start with an input layer that takes node featu-
res as input and perform a message-passing operation 
to exchange information between nodes. This process 
includes message computation and aggregation, whe-
re nodes compute and aggregate messages from their 
neighbors. The update function then updates the node’s 
representation based on the aggregated messages. GNN 
architectures typically have multiple layers of message 
passing and node update operations, allowing nodes to 
refine their representations using global information. 
The output layer produces the required output for the 
task, which can be customized for desired predictions or 
classifications.

Results 
The drug-gene network is composed of 815 nodes and 
13,436 edges, forming a complex and highly intercon-
nected structure. Its intricate connectivity, efficient 
information transfer, and diverse distribution of node 
degrees contribute to this complexity. The network is 
segmented into 11 connected components, representing 
distinct subnetworks (Fig. 1). The network’s low density 
and heterogeneity suggest a sparsely connected structu-
re, with node degrees and centralization scores indica-
ting an absence of centralized control.

Fig. 1: Network Interactome of Genes.

The top ten hub genes identified in the RTK-VEGF re-
ceptor analysis using CytoHubba are STAT3, IL6, HI-
F1A, TP53, MTOR, AKT1, GAPDH, ESR1, TNF, and 
SRC (Fig. 2). The GNN model achieved 97% accuracy 
in predicting interaction types, including single protein 
edges, protein-protein interactions, and protein complex 
groups. 
The ROC curve and epoch loss curve offer further in-
sights into the model’s performance (Fig. 3). Figure 3 
shows a plot of the loss function over training epochs. 
The loss decreases as the number of epochs increases, 
indicating that the model is learning and improving. The 
plot is titled “Epoch Loss Curve” and has labels for both 
the x and y axes. The x-axis represents the number of 
epochs, and the y-axis represents the loss value.

Fig. 2: Identification of the Top Ten Hub Genes Using the CytoHubba 
Plugin.

Fig. 3: Plot of the loss function over training epochs.

The Receiver Operating Characteristic (ROC) curve is a 
graphical tool used to assess the performance of a binary 
classification model (Fig. 4). By comparing ROC cur-
ves, one can identify which model performs better. The 
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Fig. 4: ROC curve.

Area Under the Curve (AUC) provides a summary of 
the model’s overall performance, where a value of 1 in-
dicates perfect performance, and a value of 0.5 suggests 
no discriminative power. The interpretation of the ROC 
curve is based on its closeness to the top-left corner or its 
position relative to the diagonal line.

Discussion
Periodontitis is a widespread condition with significant 
global impact, making it essential to understand its cau-
ses and potential treatments. Studies have shown that 
VEGF expression is higher in patients with periodontitis 
compared to healthy controls, indicating that VEGF may 
play a role in the disease’s pathogenesis and could serve 
as a potential therapeutic target (1,2,5).
The top hub gene in this drug-gene interaction network 
is STAT3 (16), a protein that transmits signals from 
VEGF-A, leading to changes in vascular smooth mus-
cle cells (VSMCs). VEGF-A is known to promote the 
growth of endothelial cells and new blood vessels throu-
gh angiogenesis. Previous research has shown that liga-
ture-induced periodontitis in rats causes inflammatory 
responses, cognitive impairments, and abnormal APP 
processing, with STAT3 pathway activation contributing 
to inflammation. Another study indicated that human 
gingival fibroblasts (HGFs) contribute to periodontitis 
development by increasing IL-6 production, a response 
to pathogens and cytokines, and interacting with fibro-
blasts and macrophages through VEGF activation (7). 
Synthetic (+)-terrein has been found to be non-cytotoxic 
and inhibits IL-6-induced protein phosphorylation and 
VEGF secretion, suggesting its potential anti-inflam-
matory properties in combating inflammatory disease 
progression.
Higher levels of HIF-1α and VEGF have been obser-
ved in periodontal disease, suggesting that the HIF-1α 
pathway might be activated in advanced disease stages, 
possibly influenced by bacterial endotoxins and inflam-
matory cytokines (4,17). Gingival crevicular fluid levels 

were found to be affected by disease status, indicating 
that the TNF-α/HIF-1α/VEGF pathway might play a 
role in periodontal disease pathogenesis. One study 
showed no significant difference in P53 expression be-
tween groups, suggesting that chronic periodontitis may 
not notably impact P53 expression, and that apoptosis 
changes related to P53 in this condition are minimal 
(5,17). These hub genes may play a role in the RTK-VE-
GF protein receptor family in regeneration.
The GNN model demonstrated a 97% accuracy in pre-
dicting drug-gene interactions, though it does not ac-
count for the trade-off between true positive and false 
positive rates. The ROC curve plots the true positive rate 
(TPR) against the false positive rate (FPR) at various 
thresholds, while accuracy considers all classes and mis-
classifications equally. Discrepancies between the two 
can arise from class imbalance, threshold selection, and 
varying costs of errors.
Future directions for GNNs include increasing dataset size 
to maintain high accuracy across different data distribu-
tions, external validation to assess generalizability, robust-
ness testing to evaluate reliability against noise and dis-
ruptions, and improving interpretability to explain VEGF 
drug-gene predictions (18-20). However, limitations inclu-
de potential biases in training data, the trade-offs between 
false positives and negatives, and the importance of feature 
representation for accurate drug-gene interactions. Addi-
tionally, computational and scalability issues may require 
optimizations and efficient implementation strategies to re-
duce training and inference times (16,21). Future research 
should focus on developing methods to interpret and exp-
lain GNN predictions, particularly for drug-gene interac-
tions in the RTK-VEGF protein family.

Conclusions
This study highlights the effectiveness of Graph Neural 
Networks in predicting drug-gene interactions within 
the RTK-VEGF protein family, surpassing traditional 
machine learning methods. Factors such as dataset size, 
training duration, feature availability, and model com-
plexity influenced the performance of the GNN. Howe-
ver, the study faced limitations, including the dataset’s 
incomplete representation of the entire RTK-VEGF pro-
tein family and potential biases in the training data. Fu-
ture research is necessary to optimize GNN models and 
evaluate their reliability in the context of personalized 
medicine for periodontal regeneration.
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