Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel
cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent. 2015;7(4):e495-500.
doi:10.4317/jced.52521
References
1. Coldea
A, Swain MV, Thiel N. Mechanical properties of
polymer-infiltrated-ceramic-network materials. Dental Materials. 2013;29(4):419-426. |
|
|
|
2. Van Noort R. The future of dental devices is
digital. Dental Materials. 2012;28(1):3-12. |
|
|
|
3.
Nguyen JF, Ruse D, Phan AC, Sadoun MJ. High-temperature-pressure polymerized
resin-infiltrated ceramic networks. J Dent Res. 2014;93(1):62-67. |
|
|
|
4. Della
Bona A, Corazza PH, Zhang Y. Characterization of a
polymer-infiltrated ceramic-network material. Dental
Materials. 2014;30(5):564-9. |
|
|
|
5. Bottino MA, Campos F, Ramos
NC, Rippe MP, Valandro
LF, Melo RM. Inlays
made of a hybrid material: Adaptation and bond strengths. Oper Dent.
2015; 40(3):E83-91. |
|
|
|
6. Coldea
A, Swain MV, Thiel N. In-vitro strength degradation
of dental ceramics and novel PICN material by sharp indentation. J Mech Behav Biomed Mater. 2013;26:34-42. |
|
|
|
7. He L, Swain M. A novel polymer infiltrated ceramic dental material.
Dent Mater. 2011;27(6):527-34. |
|
|
|
8. Petrini
M, Ferrante M, Su B. Fabrication and
characterization of biomimetic ceramic/polymer
composite materials for dental restoration. Dent Mater. 2013;29(4):375-81. |
|
|
|
9. He L, Purton D, Swain M. A novel polymer infiltrated ceramic for dental simulation. J Mater Sci:
Mater Med. 2011;22:1639-1643. |
|
|
|
10. ISO standard
6872:2008. Dentristry - ceramic materials; January
2009. |
|
|
|
11. Ausiello
P, Rengo S, Davidson CL, Watts DC. Stress distributions in adhesively
cemented ceramic and resin-composite Class II inlay restorations: a 3D-FEA
study. Dent Mater. 2004;20(9):862-72. |
|
|
|
12. Travitzky
NA. Microstructure and mechanical properties of alumina/copper composites
fabricated by different infiltration techniques. Mater Lett.
1998;36(1–4):114-7. |
|
|
|
13. Prielipp
H, Knechtel M, Claussen
N, Streiffer SK, Müllejans
H, Rühle M, et al. Strength and fracture toughness
of aluminum/alumina composites with interpenetrating networks. Materials
Science and Engineering. 1995;197(1):19-30. |
|
|
|
14. Wegner LD, Gibson LJ.
The fracture toughness behaviour of
interpenetrating phase composites. Int J Mech Sci. 2001;43(8):1771-91. |
|
|
|
15. Quinn JB, Quinn GD. A practical and systematic
review of Weibull statistics for reporting strengths
of dental materials. Dent Mater. 2010;26(2):135-47. |
|
|
|
16. Gonzaga CC, Cesar PF, Miranda Jr.
WG, Yoshimura HN. Slow crack growth
and reliability of dental ceramics. Dent Mater. 2011;27(4):394-406. |
|
|
|
17. Pick B, Meira JBC, Driemeier L, Braga RR. A critical view on biaxial and
short-beam uniaxial flexural strength tests applied
to resin composites using Weibull, fractographic and finite element analyses. Dent Mater.
2010;26(1):83-90. |
|
|
|
18. Quinn
GD, Hoffman K, Quinn JB. Strength and fracture origins of a
feldspathic porcelain. Dent Mater. 2012;28(5):502-11. |
|
|
|
19. Moustafa
N., Cornelis J., Albert J. Feilzer.
Evaluation of a high fracture toughness composite ceramic for dental
application. J Prosthodont. 2008;17:538-544. |
|
|
|
20. Hamakubo,
Sawase T, Yoshida K, Kamada
K, Taira Y, Atsuta M. The physical properties of a machinable resin composite for esthetic restorations. Dent
Mater J. 2005;24(1):24-9. |
|
|
|
21. Kang SH, Chang J, Son
HH. Flexural strength and microstructure of two lithium disilicate
glass ceramics for CAD/CAM restoration in the dental clinic. Restor Dent Endod. 2013;7658:134-140. |
|
|
|
22. Flury
S, Peutzfeldt A, Lussi A.
Influence of surface roughness on mechanical properties of two computer-aided
design/ computer-aided manufacturing (CAD/CAM) Ceramic Materials. Oper Dent. 2012;37(6): 617-624. |
|
|
|
23. Caparroso
C, Duque JA. CAD-CAM restorations systems and ceramics :
a review. Rev Fac Odontol
Univ Antioq. 2010;22(1): 88-108. |
|
|
|
24. Lin WS, 1 Ercoli C, Feng C, Morton D. The
effect of core material, veneering porcelain, and fabrication technique on
the biaxial flexural strength and Weibull analysis
of selected dental ceramics. J Prosthodont. 2012;21(5): 353-362. |
|
|
|
25. Weibull
W, Sweden S. A statical
distribution function of wide applicability. J Appl
Mech. 1951;18:293-297. |
|
|
|
26. Belli
R, Geinzer E, Muschweck
A, Petschelt A, Lohbauer
U. Mechanicalfatigue degradation of ceramics versus
resin composites for dental restorations. Dent Mater. 2014;30(4):424-32. |
|
|
|
27. Quinn
JB, Quinn GD. Material properties and fractography
of an indirect dental resin composite. Dent Mater. 2010;26(6):589-99. |
|
|
|
28. Yao
J, Li J, Wang Y, Huang H. Comparison of the flexural strength and marginal
accuracy of traditional and CAD/CAM interim materials before and after
thermal cycling. J Prosthet Dent. 2014 Sep;112(3):649-57. |
|
|
|
29.
Junior SAR, Ferracane JL, Bona ÁD. Flexural
strength and Weibull analysis of a microhybrid and a nanofill
composite evaluated by 3- and 4-point bending tests. Dent Mater. 2008;24(3):426-31. |
|
|
|
30. Coldea
A, Swain MV, Thiel N. Hertzian
contact response and damage tolerance of dental ceramics. J Mech Behav Biomed Mater. 2014;34:124-33. |