Sheibaninia A, Salehi A, Asatourian A. Comparison of spring characteristics of titanium‒molybdenum alloy and stainless steel. J Clin Exp Dent. 2017;9(1):e84-90.

 

doi:10.4317/jced.53274

http://dx.doi.org/doi:10.4317/jced.53274

 

References

1. Sheibaninia A. Effect of thermocycling on nickel release from orthodontic arch wires: an in vitro study. Biol Trace Elem Res. 2014;162:353-9.
https://doi.org/10.1007/s12011-014-0136-z
PMid:25262019

 

2. Sarul M, Kawala B, Kawala M, Antoszewska-Smith J. Do the NiTi low and constant force levels remain stable in vivo? The European. Eur J Orthod. 2015;37:656-64.
https://doi.org/10.1093/ejo/cju105
PMid:25700992

 

3. Bourauel C, Fries T, Drescher D, Plietsch R. Surface roughness of orthodontic wires via atomic force microscope, laser specular reflectance, and profilometry. Eur J Orthod. 1998;20:79-92.
https://doi.org/10.1093/ejo/20.1.79
PMid:9558768

 

4. Caridi V. Correlation between surface characteristics of different orthodontic materials and adherence of microorganisms. WebmedCentral ORTHODONTICS, 2014. 5(1): p. WMC004498.

 

5. Yu JH, Wu LC, Hsu JT, Chang YY, Huang HH, Huang HL. Surface roughness and topography of four commonly used types of orthodontic archwire. J Med Biol Eng. 2011;31:367-70.
https://doi.org/10.5405/jmbe.700

 

6. Verstrynge A, Van Humbeeck J, Willems G. In-vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires. Am J Orthod Dentofacial Orthop. 2006;130:460-70.
https://doi.org/10.1016/j.ajodo.2004.12.030
PMid:17045145

 

7. Saghiri MA, Sheibani N, Garcia-Godoy F, Asatourian A, Mehriar P, Scarbecz M. Correlation between endodontic broken instrument and nickel level in urine. Biol Trace Elem Res. 2013;155:114-8.
https://doi.org/10.1007/s12011-013-9755-z
PMid:23861099

 

8. Saghiri MA, Asatourian A, Garcia-Godoy F, Gutmann JL, Lotfi M, Sheibani N. The effect of electrical treatment on cyclic fatigue of NiTi instruments. Scanning. 2014;36:507-11.
https://doi.org/10.1002/sca.21146
PMid:24798116

 

9. Saghiri MA, García-Godoy F, Lotfi M, Mehrvazfar P, Aminsobhani M, Rezaie S, et al. The effect of some fluids on surface oxidation and amount of released iron of stainless steel endodontic files. Scanning. 2012;34:309-15.
https://doi.org/10.1002/sca.21016
PMid:22736320

 

10. Saghiri MA, Sheibani N, Asatourian A, Garcia-godoy F. Anticorrosive and anti-fatigue chemical composition for nickel-titanium dental instruments and a method of synthesizing the same. In.: US Patent 20,160,024,311; 2016.

 

11. Burstone CJ, Titanium GB. A new Orthodontic Alloy. Am J Orthod. 1980;77:121-32.
https://doi.org/10.1016/0002-9416(80)90001-9

PMid:6928342

 

12. Kapila S, Sachdeva R. Mechanical properties and clinical applications of orthodontic wires. Am J Orthod Dentofacial Orthop.1989;96:100-9.
https://doi.org/10.1016/0889-5406(89)90251-5

PMid:2667330

 

13. Howe G, Greener E, Crimmins D. Mechanical properties and stress relief of stainless steel orthodontic wire. J Angle Orthod. 1968;38:244-9.

PMid:5242885

 

14. Lin MC, Lin SC, Lee TH, Huang HH. Surface analysis and corrosion resistance of different stainless steel orthodontic brackets in artificial saliva. J Angle Orthod. 2006;76:322-9.

PMid:16539562

 

15. Thompson S. An overview of nickel–titanium alloys used in dentistry. Int Endod J. 2000;33:297-310.
https://doi.org/10.1046/j.1365-2591.2000.00339.x
PMid:11307203

 

16. Kusy R, Whitley J, Ambrose W, Newman J. Evaluation of titanium brackets for orthodontic treatment: Part I. The passive configuration. Am J Orthod Dentofacial Orthop. 1998;114:558-72.
https://doi.org/10.1016/S0889-5406(98)70176-3

PMid:9810052

 

17. Eliades T, Pratsinis H, Kletsas D, Eliades G, Makou M. Characterization and cytotoxicity of ions released from stainless steel and nickel-titanium orthodontic alloys. Am J Orthod Dentofacial Orthop. 2004;125:24-9.
https://doi.org/10.1016/j.ajodo.2003.09.009
PMid:14718875

 

18. Huang HH. Variation in corrosion resistance of nickel-titanium wires from different manufacturers. Angle Orthod. 2005;75:661-5.
PMid:16097238

 

19. Kusy RP. On the use of nomograms to determine the elastic property ratios of orthodontic arch wires. Am J Orthod.1983;83:374-81.
https://doi.org/10.1016/0002-9416(83)90321-4

PMid:6573845

 

20. Drake SR, Wayne DM, Powers JM, Asgar K. Mechanical properties of orthodontic wires in tension, bending, and torsion. Am J Orthod. 1982;82:206-10.
https://doi.org/10.1016/0002-9416(82)90140-3

PMid:6961793

 

21. Kusy R. Comparison of nickel-titanium and beta titanium wire sizes to conventional orthodontic arch wire materials. Am J Orthod. 1981;79:625-9.
https://doi.org/10.1016/0002-9416(81)90355-9

PMid:6940456

 

22. Juvvadi SR, Kailasam V, Padmanabhan S, Chitharanjan AB. Physical, mechanical, and flexural properties of 3 orthodontic wires: an in-vitro study. Am J Orthod Dentofacial Orthop. 2010;138:623-0.
https://doi.org/10.1016/j.ajodo.2009.01.032
PMid:21055604

 

23. Brantley WA, Eliades T. Orthodontic materials: scientific and clinical aspects. Thieme Stuttgart; 2001. Stuttgart: Thieme. (147-169)
https://doi.org/10.1055/b-002-43889

 

24. Goldberg A, Burstone C, Koenig H. Material Science Plastic Deformation of Orthodontic Wires. J Dent Res.1983;62:1016-20.
https://doi.org/10.1177/00220345830620090401
PMid:6575995

 

25. Miura F, Mogi M, Ohura Y. Japanese NiTi alloy wire: use of the direct electric resistance heat treatment method. Eur J Orthod. 1988;10:187-191.
https://doi.org/10.1093/ejo/10.1.187
PMid:3181297

 

26. Burstone CJ, Goldberg AJ. Maximum forces and deflections from orthodontic appliances. Am J Orthod. 1983;84:95-103.
https://doi.org/10.1016/0002-9416(83)90173-2

PMid:6576645

 

27. Zorko L, Rudolf R. Metallographic sample preparation of orthodontic Ni-Ti wire. Metalurgija. 2009;15:267-74.

 

28. Thurow RC. The view from the condyle. Angle Orthod. 1982;52:6-9.

PMid:6950680

 

29. Shastry C, Goldberg A. The influence of drawing parameters on the mechanical properties of two beta-titanium alloys. Journal of dental research. 1983;62:1092-7.
https://doi.org/10.1177/00220345830620101901
PMid:6578241

 

30. Wilson D, Goldberg A. Alternative beta-titanium alloys for orthodontic wires. J Dent Res. 1987;3:337-341.
https://doi.org/10.1016/s0109-5641(87)80071-4

PMid:3481599

 

31. Mo WN, Choe HC, Ko YM. Effect of drawing method on the mechanical properties and corrosion resistance of stainless steel wire for use in orthodontics. In: JOURNAL OF DENTAL RESEARCH(INT AMER ASSOC DENTAL RESEARCHI ADR/AADR, USA); 2003. p. B341-B341.

 

32. Ødegaard J, Meling T, Meling E. The effects of loops on the torsional stiffnesses of rectangular wires: an in vitro study. Am J Orthod Dentofacial Orthop. 1996;109:496-505.
https://doi.org/10.1016/S0889-5406(96)70134-8

PMid:8638594

 

33. Dalstra M, Denes G, Melsen B. Titanium-niobium, a new finishing wire alloy. Clin Orthod Res. 2000;3:6-14.
https://doi.org/10.1034/j.1600-0544.2000.030103.x
PMid:11168279

 

34. Burstone C. Welding of TMA wire. Clinical applications. J Clin Orthod.1987;21:609-15.
PMid:2895778

 

35. Wichelhaus A, Geserick M, Hibst R, Sander FG. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires. J Dent Mater. 2005;21:938-45.
https://doi.org/10.1016/j.dental.2004.11.011
PMid:15923033