Aboushady IM, Salem ZA, Sabry D, Mohamed A. Comparative study of the osteogenic potential of mesenchymal stem cells derived from different sources. J Clin Exp Dent. 2018;10(1):e7-13.

 

doi:10.4317/jced.53957

http://dx.doi.org/doi:10.4317/jced.53957

 

References

1. Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe- Heider F, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6:1082-93.
https://doi.org/10.1038/ncb1181
PMid:15517002

 

2. Egusa H, Iida K, Kobayashi M, Lin TY, Zhu M, Zuk PA, et al. Down regulation of extracellular matrix-related gene clusters during osteogenic differentiation of human bone marrow- and adipose tissue-derived stromal cells. Tissue Eng. 2007;13:2589-600.
https://doi.org/10.1089/ten.2007.0080
PMid:17666000

 

3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-7.
https://doi.org/10.1126/science.284.5411.143
PMid:10102814

 

4. Peran M, Marchal JA, Rodriguez-Serrano F, Alvarez P, Aranega A. Trans differentiation: why and how. Cell Biol Int. 2011;35:373-9.
https://doi.org/10.1042/CBI20100445
PMid:21413928

 

5. Gao Y, Zhao G, Li D, Chen X, Pang J, Ke J. Isolation and Multiple Differentiation Potential Assessment of Human Gingival Mesenchymal Stem Cells. Int J Mol Sci. 2014;15:20982-96.
https://doi.org/10.3390/ijms151120982
PMid:25405732 PMCid:PMC4264207

 

6. Shanbhag S, Tomar G, Stavropoulos, A, Shanbhag V, Wani M. Osteogenic potential of human gingiva-derived mesenchymal stem cells and 3D bioactive glass scaffolds for bone tissue engineering applications. Clin Oral Impl Res. 2014;25 (Suppl. 10).

 

7. Kishi T, Takao T, Fujita K, Taniguchi H. Clonal proliferation of multi- potent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Biophys Res Commun. 2006;340:544-52.
https://doi.org/10.1016/j.bbrc.2005.12.031
PMid:16376857

 

8. Abdel Aziz MT, Atta HM, Mahfouz S, Fouad HH, Roshdy NK, Ahmed HH, et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clin Biochem. 2007;40:893-9.
https://doi.org/10.1016/j.clinbiochem.2007.04.017
PMid:17543295

 

9. Taïhi I, Nassif A, Berbar T, Isaac J, Berdal A, Gogly B, et al. Validation of Housekeeping Genes to Study Human Gingival Stem Cells and Their In Vitro Osteogenic Differentiation Using Real-Time RT-qPCR. Stem Cells Int. 2016;2016:6261490.
https://doi.org/10.1155/2016/6261490
PMid:26880978 PMCid:PMC4736224

 

10. Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, et al. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One. 2008;3:e2063.
https://doi.org/10.1371/journal.pone.0002063
PMid:18446241 PMCid:PMC2329592

 

11. Kalaszczynska I, Ruminski S, Platek AE, Bissenik I, Zakrzewski P, Noszczyk M, et al. Substantial differences between human and ovine mesenchymal stem cells in response to osteogenic media: how to explain and how to manage? Biores Open Access. 2013;2:356-63.
https://doi.org/10.1089/biores.2013.0029
PMid:24083091 PMCid:PMC3776620

 

12. Izumi Y, Aoki A, Yamada Y, Kobayashi H, Iwata T, Akizuki T, et al. Current and future periodontal tissue engineering. Periodontology. 2000;56:166-87.
https://doi.org/10.1111/j.1600-0757.2010.00366.x
PMid:21501243

 

13. Derubeis AR, Cancedda R. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng. 2004;32:160-5.
https://doi.org/10.1023/B:ABME.0000007800.89194.95

 

14. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, et al. Mesenchymal Stem Cells Derived from Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis. J Immunol. 2009; 183:7787-98.
https://doi.org/10.4049/jimmunol.0902318
PMid:19923445 PMCid:PMC2881945

 

15. Tomar GB, Srivastava RK, Gupta N, Barhanpurkar AP, Pote ST, Jhaveri HM, et al. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun. 2010;393:377-83.
https://doi.org/10.1016/j.bbrc.2010.01.126
PMid:20138833

 

16. Gorjup E, Danner S, Rotter N, Habermann J, Brassat U, Brummendorf TH, et al. Glandular tissue from human pancreas and salivary gland yields similar stem cell populations. Eur J Cell Biol. 2009;88:409-21.
https://doi.org/10.1016/j.ejcb.2009.02.187
PMid:19410331

 

17. Sambrook P, Birmingham J, Kempler S, Kelly P, Eberl S, Pocock N, et al. Corticosteroid effects on proximal femur bone loss. J Bone Miner Res. 2009;5:1211-6.
https://doi.org/10.1002/jbmr.5650051204
PMid:2075834

 

18. Falla N, Vlasselaer V, Bierkens I, Borremans B, Schoeters G, van Gorp U. Characterization of a 5-fluorouracil-emiched osteoprogenitor population of the murine bone marrow. Blood. 1993;82:3580-91.
PMid:8260697

 

19. Chung CH, Golub EE, Forbes E, Tokuoka T, Shapiro IM. Mechanism of action of beta-glycerophosphate on bone cell mineralization. Calcif Tissue Int. 1992;51:305-11.
https://doi.org/10.1007/BF00334492
PMid:1422975

 

20. Tenenbaum HC, Limeback H, McCulloch CA, Mamujee H, Sukhu B, Torontali M. Osteogenic phase-specific co-regulation of collagen synthesis and mineralization by beta- glycerophosphate in chick periosteal cultures. Bone. 1992;13:129-138.
https://doi.org/10.1016/8756-3282(92)90002-E

 

21. Gilbert M, Giachelli CM, Stayton PS. Biomimetic peptides that engage specific integrin- dependent signaling pathways and bind to calcium phosphate surfaces. J Biomed Mater Res A. 2003;67:69-77.
https://doi.org/10.1002/jbm.a.10053
PMid:14517863

 

22. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochern. 1997;64:295-312.
https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I

 

23. Satake M, Nomura S, Yamaguchi-Iwai Y, Takahama Y, Hashimoto Y, Niki M, et al. Expression of the Runt domain-encoding PEBP2_A genes in T cells during thymic development. Mol Cell Biol.1995;15:1662-70.
https://doi.org/10.1128/MCB.15.3.1662
PMid:7862157 PMCid:PMC230390

 

24. Stewart M, Terry A, Hu M, O'Hara M, Blyth K, Baxter E, et al. Proviral insertions induce the expression of bone-specific isoforms of PEBP2alphaA (CBFA1): evidence for a new myc collaborating oncogene. Proc Natl Acad Sci U S A. 1997;94:8646-51.
https://doi.org/10.1073/pnas.94.16.8646
PMid:9238031 PMCid:PMC23059

 

25. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755-64.
https://doi.org/10.1016/S0092-8674(00)80258-5

 

26. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89:773-9.
https://doi.org/10.1016/S0092-8674(00)80260-3

 

27. Ortega N, Behonick DJ, Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol. 2004;14:86-93.
https://doi.org/10.1016/j.tcb.2003.12.003
PMid:15102440 PMCid:PMC2779708

 

28. Knäuper V, Will H, López-Otin C, Smith B, Atkinson SJ, Stanton H, et al. Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem. 1996;271:17124-31.
https://doi.org/10.1074/jbc.271.29.17124
PMid:8663255

 

29. Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, López-Otín C, et al. Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci U S A. 2004;101:17192-7.
https://doi.org/10.1073/pnas.0407788101
PMid:15563592 PMCid:PMC535367