Dal Piva AMO,
Tribst JPM, Borges ALS, de Melo RM, Bottino MA.
Influence of substrate design for in vitro mechanical testing. J
Clin Exp Dent. 2019;11(2):e119-25.
doi:10.4317/jced.55353
http://dx.doi.org/10.4317/jced.55353
___________________________________________________________________________________________________________________________________
References
1. Denry I, Kelly JR. State
of the art of zirconia for dental applications. Dent Mater.
2008;24:299-307. |
|
|
|
2. Sailer I, Makarov NA,
Thoma DS, Zwahlen M, Pjetursson BE. All-ceramic or metal-ceramic
tooth-supported fixed dental prostheses (FDPs)? A systematic review of the
survival and complication rates. Part I: Single crowns (SCs). Dent Mater.
2015;31:603-23. |
|
|
|
3. Pjetursson BE, Sailer I,
Makarov NA, Zwahlen M, Thoma DS. All-ceramic or metal-ceramic tooth-supported
fixed dental prostheses (FDPs)? A systematic review of the survival and
complication rates. Part II: Multiple-unit FDPs. Dent Mater.
2015;31:624-39. |
|
|
|
4. Elshiyab SH, Nawafleh N,
George R. Survival and testing parameters of zirconia-based crowns under
cyclic loading in an aqueous environment: A systematic review. J Investig Clin
Dent. 2017;8. |
|
|
|
5. Corazza PH, Duan Y,
Kimpara ET, Griggs JA, Della Bona A. Lifetime comparison of Y-TZP/porcelain
crowns under different loading conditions. J Dent. 2015;43:450-7. |
|
|
|
6. May LG, Kelly JR, Bottino
MA, Hill T. Influence of the resin cement thickness on the fatigue failure
loads of CAD/CAM feldspathic crowns. Dent Mater. 2015;31:895-900. |
|
|
|
7.
Villefort RF, Amaral M, Pereira GK, Campos TM, Zhang Y, Bottino MA, et al. Effects of two grading techniques of zirconia
material on the fatigue limit of full-contour 3-unit fixed dental prostheses.
Dent Mater. 2017;33:e155-64. |
|
|
|
8. Ramos GF, Monteiro EB,
Bottino MA, Zhang Y, Marques de Melo R. Failure Probability of Three Designs
of Zirconia Crowns. Int J Periodontics Restorative Dent. 2015;35:843-9. |
|
|
|
9. Homaei E, Jin XZ, Pow
EHN, Matinlinna JP, Tsoi JK, Farhangdoost K. Numerical fatigue analysis of
premolars restored by CAD/CAM ceramic crowns. Dent Mater. 2018;34:e149-57. |
|
|
|
10. Miller M, DuVall N,
Brewster J, Wajdowicz MN, Harris A, Roberts HW. Bicuspid axial wall height
effect on CAD/CAM crown fracture mode on preparations containing advanced
total occlusal convergence. J Prosthodont. 2018. doi: 10.1111/jopr.12760. |
|
|
|
11. Hoopes W, Cushen S, DuVall
N, Wajdowicz M, Brewster J, Roberts H. Failure load effect of molar axial
wall height with CAD/CAM ceramic crowns with moderate occlusal convergence. J Esthet Restor
Dent. 2018;30:249-53. |
|
|
|
12. Scherrer SS, Lohbauer U,
Della Bona A, Vichi A, Tholey MJ, Kelly JR, et al. ADM guidance-Ceramics:
guidance to the use of fractography in failure analysis of brittle materials.
Dent
Mater. 2017;33:599-620. |
|
|
|
13.
Kelly JR, Cesar PF, Scherrer SS, Della Bona A, van Noort R, Tholey M, et al.
ADM guidance-ceramics: Fatigue principles and testing. Dent Mater.
2017;33:1192-1204. |
|
|
|
14. Corazza PH, Feitosa SA,
Borges AL, Della Bona A. Influence of convergence angle of tooth preparation
on the fracture resistance of Y-TZP-based all-ceramic restorations. Dent Mater.
2013;29:339-47. |
|
|
|
15. Kelly JR, Rungruanganunt
P, Hunter B, Vailati F. Development of a clinically validated bulk failure
test for ceramic crowns. J Prosthet Dent. 2010;104:228-38. |
|
|
|
16. Nicolaisen MH, Bahrami
G, Finlay S, Isidor F. Comparison of fatigue resistance and failure modes
between metal-ceramic and all-ceramic crowns by cyclic loading in water. J Dent.
2014;42:1613-20. |
|
|
|
17. Heintze SD, Eser A,
Monreal D, Rousson V. Using a chewing simulator for fatigue testing of metal
ceramic crowns. J Mech Behav Biomed Mater. 2017;65:770-80. |
|
|
|
18. Zimmermann M, Egli G,
Zaruba M, Mehl A. Influence of material thickness on fractural strength of
CAD/CAM fabricated ceramic crowns. Dent Mater J. 2017;36:778-83. |
|
|
|
19. Nawafleh NA, Hatamleh
MM, Öchsner A, Mack F. Fracture load and survival of anatomically
representative monolithic lithium disilicate crowns with reduced tooth
preparation and ceramic thickness. J Adv Prosthodont. 2017;9:416-22. |
|
|
|
20. Kim SY, Choi JW, Ju SW,
Ahn JS, Yoon MJ, Huh JB. Fracture strength after fatigue loading of lithium
disilicate pressed zirconia crowns. Int J Prosthodont. 2016;29:369-71. |
|
|
|
21.
Rocca GT, Sedlakova P, Saratti CM, Sedlacek R, Gregor L, Rizcalla N, et al. Fatigue behavior of resin-modified monolithic
CAD-CAM RNC crowns and endocrowns. Dent Mater. 2016;32:e338-50. |
|
|
|
22.
Bergamo E, da Silva WJ, Cesar PF, Del Bel Cury AA. Fracture load and phase transformation of monolithic zirconia crowns
submitted to different aging protocols. Oper Dent 2016;41:E118-30. |
|
|
|
23.
Antunes MCF, Miranda JS, Carvalho RLA, Carvalho RF, Kimpara ET, Assunção E,
et al. Can low-fusing glass application affect the marginal
misfit and bond strength of Y-TZP crowns? Braz Oral Res. 2018;32:e34. |
|
|
|
24. Zhu J, Rong Q, Wang X,
Gao X. Influence of remaining tooth structure and restorative material type
on stress distribution in endodontically treated maxillary premolars: A
finite element analysis. J Prosthet Dent. 2017;34:1342-50. |
|
|
|
25. Dal Piva AMO, Tribst
JPM, Borges ALS, Souza ROAE, Bottino MA. CAD-FEA modeling and analysis of
different full crown monolithic restorations. Dent Mater. 2018;34:1466-73. |
|
|
|
26.
Tribst JPM, Dal Piva AMO, Madruga CFL, Valera MC, Borges ALS, Bresciani E, et
al. Endocrown restorations: Influence of dental remnant
and restorative material on stress distribution. Dent Mater.
2018;S0109-5641:31303-9. |
|
|
|
27.
Ausiello P, Ciaramella S, Fabianelli A, Gloria A, Martorelli M, Lanzotti A,
et al. Mechanical behavior of bulk direct composite versus
block composite and lithium disilicate indirect Class II restorations by
CAD-FEM modeling. Dent
Mater. 2017;33:690-701. |
|
|
|
28.
Ramos Nde C, Campos TM, Paz IS, Machado JP, Bottino MA, Cesar PF, et al. Microstructure characterization and SCG of newly
engineered dental ceramics. Dent Mater. 2016;32:870-8. |
|
|
|
29.
Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM Resin Nano
Ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater.
2014;30:954-62. |
|
|
|
30. Tribst JPM, Morais DC,
Alonso AA, Dal Piva AMO, Borges ALS. Comparative three-dimensional finite
element analysis of implant-supported fixed complete arch mandibular
prostheses in two materials. J Indian Prosthodont Soc. 2017;17:255-60. |
|
|
|
31. Gresnigt MM, Özcan M,
van den Houten ML, Schipper L, Cune MS. Fracture strength, failure type and
Weibull characteristics of lithium disilicate and multiphase resin composite
endocrowns under axial and lateral forces. Dent Mater. 2016;32:607-14. |
|
|
|
32.
Choi JW, Kim SY, Bae JH, Bae EB, Huh JB. In vitro study of the fracture resistance of monolithic lithium
disilicate, monolithic zirconia, and lithium disilicate pressed on zirconia
for three-unit fixed dental prostheses. J Adv Prosthodont. 2017;9:244-51. |
|
|
|
33. Rosentritt M, Hahnel S,
Engelhardt F, Behr M, Preis V. In vitro performance and fracture resistance
of CAD/CAM-fabricated implant supported molar crowns. Clin Oral
Investig. 2017;21:1213-9. |
|
|
|
34. Fill TS, Toogood RW,
Major PW, Carey JP. Analytically determined mechanical properties of, and
models for the periodontal ligament: critical review of literature. J Biomech.
2012;45:9-16. |
|
|
|
35. Sagsoz NP, Yanıkoglu N.
Evaluation of the fracture resistance of computer-aided design/computer-aided
manufacturing monolithic crowns prepared in different cement thicknesses. Niger J Clin
Pract. 2018;21:417-22. |
|
|
|
36. Soares LM, Razaghy M,
Magne P. Optimization of large MOD restorations: Composite resin inlays vs.
short fiber-reinforced direct restorations. Dent Mater. 2018;34:587-97. |
|
|
|
37. Gresnigt MMM, Özcan M,
Carvalho M, Lazari P, Cune MS, Razavi P, et al. Effect of luting agent on the
load to failure and accelerated-fatigue resistance of lithium disilicate
laminate veneers. Dent
Mater. 2017;33:1392-1401. |
|
|
|
38. Heintze SD, Cavalleri A,
Zellweger G, Büchler A, Zappini G. Fracture frequency of all-ceramic crowns
during dynamic loading in a chewing simulator using different loading and
luting protocols. Dent
Mater. 2008;24:1352-61. |
|
|
|
39. Nawafleh N, Hatamleh MM,
Öchsner A, Mack F. The impact of core/veneer thickness ratio and cyclic
loading on fracture resistance of lithium disilicate crown. Int J
Prosthodont. 2018;27:75-82. |
|
|
|
40. Soares CJ, Pizi EC,
Fonseca RB, Martins LR. Influence of root embedment material and periodontal
ligament simulation on fracture resistance tests. Braz Oral Res.
2005;19:11-6. |
|
|
|
41. Benazzi S, Nguyen HN,
Kullmer O, Hublin JJ. Exploring the biomechanics of taurodontism. J Anat.
2015;226:180-8. |
|
|
|
42. Monteiro JB, Riquieri H,
Prochnow C, Guilardi LF, Pereira GKR, Borges ALS, et al. Fatigue failure load
of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics:
Effect of ceramic thickness. Dent Mater. 2018;34:891-900. |
|
|
|
43. Venturini AB, Prochnow
C, Pereira GKR, Werner A, Kleverlaan CJ, Valandro LF. The effect of
hydrofluoric acid concentration on the fatigue failure load of adhesively
cemented feldspathic ceramic discs. Dent Mater. 2018;34:667-75. |