Dal Piva AMO, Tribst JPM, Borges ALS, de Melo RM, Bottino MA. Influence of substrate design for in vitro mechanical testing. J Clin Exp Dent. 2019;11(2):e119-25.

 

doi:10.4317/jced.55353

http://dx.doi.org/10.4317/jced.55353

___________________________________________________________________________________________________________________________________

 

References

1. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24:299-307.
https://doi.org/10.1016/j.dental.2007.05.007
PMid:17659331

 

2. Sailer I, Makarov NA, Thoma DS, Zwahlen M, Pjetursson BE. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent Mater. 2015;31:603-23.
https://doi.org/10.1016/j.dental.2015.02.011
PMid:25842099

 

3. Pjetursson BE, Sailer I, Makarov NA, Zwahlen M, Thoma DS. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs. Dent Mater. 2015;31:624-39.
https://doi.org/10.1016/j.dental.2015.02.013
PMid:25935732

 

4. Elshiyab SH, Nawafleh N, George R. Survival and testing parameters of zirconia-based crowns under cyclic loading in an aqueous environment: A systematic review. J Investig Clin Dent. 2017;8.
https://doi.org/10.1111/jicd.12261

 

5. Corazza PH, Duan Y, Kimpara ET, Griggs JA, Della Bona A. Lifetime comparison of Y-TZP/porcelain crowns under different loading conditions. J Dent. 2015;43:450-7.
https://doi.org/10.1016/j.jdent.2015.01.012
PMid:25676180

 

6. May LG, Kelly JR, Bottino MA, Hill T. Influence of the resin cement thickness on the fatigue failure loads of CAD/CAM feldspathic crowns. Dent Mater. 2015;31:895-900.
https://doi.org/10.1016/j.dental.2015.04.019
PMid:26003231

 

7. Villefort RF, Amaral M, Pereira GK, Campos TM, Zhang Y, Bottino MA, et al. Effects of two grading techniques of zirconia material on the fatigue limit of full-contour 3-unit fixed dental prostheses. Dent Mater. 2017;33:e155-64.
https://doi.org/10.1016/j.dental.2016.12.010
PMid:28118929 PMCid:PMC5359063

 

8. Ramos GF, Monteiro EB, Bottino MA, Zhang Y, Marques de Melo R. Failure Probability of Three Designs of Zirconia Crowns. Int J Periodontics Restorative Dent. 2015;35:843-9.
https://doi.org/10.11607/prd.2448
PMid:26509988 PMCid:PMC4671273

 

9. Homaei E, Jin XZ, Pow EHN, Matinlinna JP, Tsoi JK, Farhangdoost K. Numerical fatigue analysis of premolars restored by CAD/CAM ceramic crowns. Dent Mater. 2018;34:e149-57.
https://doi.org/10.1016/j.dental.2018.03.017
PMid:29653725

 

10. Miller M, DuVall N, Brewster J, Wajdowicz MN, Harris A, Roberts HW. Bicuspid axial wall height effect on CAD/CAM crown fracture mode on preparations containing advanced total occlusal convergence. J Prosthodont. 2018. doi: 10.1111/jopr.12760.
https://doi.org/10.1111/jopr.12760

 

11. Hoopes W, Cushen S, DuVall N, Wajdowicz M, Brewster J, Roberts H. Failure load effect of molar axial wall height with CAD/CAM ceramic crowns with moderate occlusal convergence. J Esthet Restor Dent. 2018;30:249-53.
https://doi.org/10.1111/jerd.12366
PMid:29383829

 

12. Scherrer SS, Lohbauer U, Della Bona A, Vichi A, Tholey MJ, Kelly JR, et al. ADM guidance-Ceramics: guidance to the use of fractography in failure analysis of brittle materials. Dent Mater. 2017;33:599-620.
https://doi.org/10.1016/j.dental.2017.03.004
PMid:28400062

 

13. Kelly JR, Cesar PF, Scherrer SS, Della Bona A, van Noort R, Tholey M, et al. ADM guidance-ceramics: Fatigue principles and testing. Dent Mater. 2017;33:1192-1204.
https://doi.org/10.1016/j.dental.2017.09.006
PMid:29017761

 

14. Corazza PH, Feitosa SA, Borges AL, Della Bona A. Influence of convergence angle of tooth preparation on the fracture resistance of Y-TZP-based all-ceramic restorations. Dent Mater. 2013;29:339-47.
https://doi.org/10.1016/j.dental.2012.12.007
PMid:23333235

 

15. Kelly JR, Rungruanganunt P, Hunter B, Vailati F. Development of a clinically validated bulk failure test for ceramic crowns. J Prosthet Dent. 2010;104:228-38.
https://doi.org/10.1016/S0022-3913(10)60129-1

 

16. Nicolaisen MH, Bahrami G, Finlay S, Isidor F. Comparison of fatigue resistance and failure modes between metal-ceramic and all-ceramic crowns by cyclic loading in water. J Dent. 2014;42:1613-20.
https://doi.org/10.1016/j.jdent.2014.08.013
PMid:25174946

 

17. Heintze SD, Eser A, Monreal D, Rousson V. Using a chewing simulator for fatigue testing of metal ceramic crowns. J Mech Behav Biomed Mater. 2017;65:770-80.
https://doi.org/10.1016/j.jmbbm.2016.09.002
PMid:27771595

 

18. Zimmermann M, Egli G, Zaruba M, Mehl A. Influence of material thickness on fractural strength of CAD/CAM fabricated ceramic crowns. Dent Mater J. 2017;36:778-83.
https://doi.org/10.4012/dmj.2016-296
PMid:28835598

 

19. Nawafleh NA, Hatamleh MM, Öchsner A, Mack F. Fracture load and survival of anatomically representative monolithic lithium disilicate crowns with reduced tooth preparation and ceramic thickness. J Adv Prosthodont. 2017;9:416-22.
https://doi.org/10.4047/jap.2017.9.6.416
PMid:29279760 PMCid:PMC5741444

 

20. Kim SY, Choi JW, Ju SW, Ahn JS, Yoon MJ, Huh JB. Fracture strength after fatigue loading of lithium disilicate pressed zirconia crowns. Int J Prosthodont. 2016;29:369-71.
https://doi.org/10.11607/ijp.4602
PMid:27479345

 

21. Rocca GT, Sedlakova P, Saratti CM, Sedlacek R, Gregor L, Rizcalla N, et al. Fatigue behavior of resin-modified monolithic CAD-CAM RNC crowns and endocrowns. Dent Mater. 2016;32:e338-50.
https://doi.org/10.1016/j.dental.2016.09.024
PMid:27671466

 

22. Bergamo E, da Silva WJ, Cesar PF, Del Bel Cury AA. Fracture load and phase transformation of monolithic zirconia crowns submitted to different aging protocols. Oper Dent 2016;41:E118-30.
https://doi.org/10.2341/15-154-L
PMid:26918927

 

23. Antunes MCF, Miranda JS, Carvalho RLA, Carvalho RF, Kimpara ET, Assunção E, et al. Can low-fusing glass application affect the marginal misfit and bond strength of Y-TZP crowns? Braz Oral Res. 2018;32:e34.
https://doi.org/10.1590/1807-3107bor-2018.vol32.0034
PMid:29742232

 

24. Zhu J, Rong Q, Wang X, Gao X. Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxillary premolars: A finite element analysis. J Prosthet Dent. 2017;34:1342-50.
https://doi.org/10.1016/j.prosdent.2016.08.023

 

25. Dal Piva AMO, Tribst JPM, Borges ALS, Souza ROAE, Bottino MA. CAD-FEA modeling and analysis of different full crown monolithic restorations. Dent Mater. 2018;34:1466-73.
https://doi.org/10.1016/j.dental.2018.06.024

 

26. Tribst JPM, Dal Piva AMO, Madruga CFL, Valera MC, Borges ALS, Bresciani E, et al. Endocrown restorations: Influence of dental remnant and restorative material on stress distribution. Dent Mater. 2018;S0109-5641:31303-9.

 

27. Ausiello P, Ciaramella S, Fabianelli A, Gloria A, Martorelli M, Lanzotti A, et al. Mechanical behavior of bulk direct composite versus block composite and lithium disilicate indirect Class II restorations by CAD-FEM modeling. Dent Mater. 2017;33:690-701.
https://doi.org/10.1016/j.dental.2017.03.014
PMid:28413061

 

28. Ramos Nde C, Campos TM, Paz IS, Machado JP, Bottino MA, Cesar PF, et al. Microstructure characterization and SCG of newly engineered dental ceramics. Dent Mater. 2016;32:870-8.
https://doi.org/10.1016/j.dental.2016.03.018
PMid:27094589

 

29. Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater. 2014;30:954-62.
https://doi.org/10.1016/j.dental.2014.05.018
PMid:25037897

 

30. Tribst JPM, Morais DC, Alonso AA, Dal Piva AMO, Borges ALS. Comparative three-dimensional finite element analysis of implant-supported fixed complete arch mandibular prostheses in two materials. J Indian Prosthodont Soc. 2017;17:255-60.
https://doi.org/10.4103/jips.jips_11_17
PMid:28936039 PMCid:PMC5601488

 

31. Gresnigt MM, Özcan M, van den Houten ML, Schipper L, Cune MS. Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces. Dent Mater. 2016;32:607-14.
https://doi.org/10.1016/j.dental.2016.01.004
PMid:26935018

 

32. Choi JW, Kim SY, Bae JH, Bae EB, Huh JB. In vitro study of the fracture resistance of monolithic lithium disilicate, monolithic zirconia, and lithium disilicate pressed on zirconia for three-unit fixed dental prostheses. J Adv Prosthodont. 2017;9:244-51.
https://doi.org/10.4047/jap.2017.9.4.244
PMid:28874990 PMCid:PMC5582089

 

33. Rosentritt M, Hahnel S, Engelhardt F, Behr M, Preis V. In vitro performance and fracture resistance of CAD/CAM-fabricated implant supported molar crowns. Clin Oral Investig. 2017;21:1213-9.
https://doi.org/10.1007/s00784-016-1898-9
PMid:27370027

 

34. Fill TS, Toogood RW, Major PW, Carey JP. Analytically determined mechanical properties of, and models for the periodontal ligament: critical review of literature. J Biomech. 2012;45:9-16.
https://doi.org/10.1016/j.jbiomech.2011.09.020
PMid:22014328

 

35. Sagsoz NP, Yanıkoglu N. Evaluation of the fracture resistance of computer-aided design/computer-aided manufacturing monolithic crowns prepared in different cement thicknesses. Niger J Clin Pract. 2018;21:417-22.
PMid:29607851

 

36. Soares LM, Razaghy M, Magne P. Optimization of large MOD restorations: Composite resin inlays vs. short fiber-reinforced direct restorations. Dent Mater. 2018;34:587-97.
https://doi.org/10.1016/j.dental.2018.01.004
PMid:29366492

 

37. Gresnigt MMM, Özcan M, Carvalho M, Lazari P, Cune MS, Razavi P, et al. Effect of luting agent on the load to failure and accelerated-fatigue resistance of lithium disilicate laminate veneers. Dent Mater. 2017;33:1392-1401.
https://doi.org/10.1016/j.dental.2017.09.010
PMid:29079354

 

38. Heintze SD, Cavalleri A, Zellweger G, Büchler A, Zappini G. Fracture frequency of all-ceramic crowns during dynamic loading in a chewing simulator using different loading and luting protocols. Dent Mater. 2008;24:1352-61.
https://doi.org/10.1016/j.dental.2008.02.019
PMid:18433859

 

39. Nawafleh N, Hatamleh MM, Öchsner A, Mack F. The impact of core/veneer thickness ratio and cyclic loading on fracture resistance of lithium disilicate crown. Int J Prosthodont. 2018;27:75-82.
https://doi.org/10.1111/jopr.12473
PMid:26965298

 

40. Soares CJ, Pizi EC, Fonseca RB, Martins LR. Influence of root embedment material and periodontal ligament simulation on fracture resistance tests. Braz Oral Res. 2005;19:11-6.
https://doi.org/10.1590/S1806-83242005000100003
PMid:16229350

 

41. Benazzi S, Nguyen HN, Kullmer O, Hublin JJ. Exploring the biomechanics of taurodontism. J Anat. 2015;226:180-8.
https://doi.org/10.1111/joa.12260
PMid:25407030 PMCid:PMC4304574

 

42. Monteiro JB, Riquieri H, Prochnow C, Guilardi LF, Pereira GKR, Borges ALS, et al. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness. Dent Mater. 2018;34:891-900.
https://doi.org/10.1016/j.dental.2018.03.004
PMid:29588077

 

43. Venturini AB, Prochnow C, Pereira GKR, Werner A, Kleverlaan CJ, Valandro LF. The effect of hydrofluoric acid concentration on the fatigue failure load of adhesively cemented feldspathic ceramic discs. Dent Mater. 2018;34:667-75.
https://doi.org/10.1016/j.dental.2018.01.010
PMid:29397196