Jowkar Z, Jowkar M, Shafiei F. Mechanical and dentin bond strength properties of the nanosilver enriched glass ionomer cement. J Clin Exp Dent. 2019;11(3):e275-81.

 

doi:10.4317/jced.55522

http://dx.doi.org/10.4317/jced.55522

_______________________________________________________________________________________________________________________

 

References

1. Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Sakagami H, Morales-Luckie RA, Nakajima H. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement. Journal of Applied Oral Science. 2015;23:321-8.
https://doi.org/10.1590/1678-775720140496
PMid:26221928 PMCid:PMC4510668

 

2. Xie D, Weng Y, Guo X, Zhao J, Gregory RL, Zheng C. Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dental Materials. 2011;27:487-96.
https://doi.org/10.1016/j.dental.2011.02.006
PMid:21388668

 

3. Doozandeh M, Firouzmandi M, Mirmohammadi M. The Simultaneous Effect of Extended Etching Time and Casein Phosphopeptide-Amorphous Calcium Phosphate containing Paste Application on Shear Bond Strength of Etch-and-rinse Adhesive to Caries-affected Dentin. The journal of contemporary dental practice. 2015;16:794-9.
https://doi.org/10.5005/jp-journals-10024-1759
PMid:26581459

 

4. Kasraei S, Sami L, Hendi S, AliKhani M-Y, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restorative dentistry & endodontics. 2014;39:109-14.
https://doi.org/10.5395/rde.2014.39.2.109
PMid:24790923 PMCid:PMC3978100

 

5. Bürgers R, Eidt A, Frankenberger R, Rosentritt M, Schweikl H, Handel G, et al. The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials. Archives of Oral Biology. 2009;54:595-601.
https://doi.org/10.1016/j.archoralbio.2009.03.004
PMid:19375069

 

6. Elsaka SE, Hamouda IM, Swain MV. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties. Journal of dentistry. 2011;39:589-98.
https://doi.org/10.1016/j.jdent.2011.05.006
PMid:21651955

 

7. Dhull K, Nandlal B. Comparative evaluation of fluoride release from PRG-composites and compomer on application of topical fluoride: An in-vitro study. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2009;27:27.
https://doi.org/10.4103/0970-4388.50813
PMid:19414971

 

8. Palmer G, Jones F, Billington R, Pearson G. Chlorhexidine release from an experimental glass ionomer cement. Biomaterials. 2004;25:5423-31.
https://doi.org/10.1016/j.biomaterials.2003.12.051
PMid:15130727

 

9. Borzabadi-Farahani A, Borzabadi E, Lynch E. Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontologica Scandinavica. 2014;72:413-7.
https://doi.org/10.3109/00016357.2013.859728
PMid:24325608

 

10. Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta biomaterialia. 2008;4:432-40.
https://doi.org/10.1016/j.actbio.2007.07.011
PMid:17921077

 

11. Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Kanda Y, Nakajima H, Sakagami H. Induction of prostaglandin E2 production by TiO2 nanoparticles in human gingival fibroblast. In vivo. 2014;28:217-22.

PMID:24632976

 

12. Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Kanda Y, Nakajima H, Sakagami H. Effects of TiO2 nano glass ionomer cements against normal and cancer oral cells. In vivo. 2014;28:895-907.

PMID:25189906

 

13. Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014;8:1-16.
https://doi.org/10.3109/17435390.2012.742935
PMid:23092443 PMCid:PMC3878355

 

14. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances. 2009;27:76-83.
https://doi.org/10.1016/j.biotechadv.2008.09.002
PMid:18854209

 

15. Gomes-Filho JE, Silva FO, Watanabe S, Cintra LTA, Tendoro KV, Dalto LG, et al. Tissue reaction to silver nanoparticles dispersion as an alternative irrigating solution. Journal of endodontics. 2010;36:1698-702.
https://doi.org/10.1016/j.joen.2010.07.007
PMid:20850681

 

16. Magalhães APR, Santos LB, Lopes LG, Estrela CRdA, Estrela C, Torres ÉM, et al. Nanosilver application in dental cements. ISRN Nanotechnology. 2012;2012.

 

17. Siqueira PC, Ana-Paula-Rodrigues Magalhães WC, Pires FCP, Silveira-Lacerda EP, Carrião MS, Bakuzis AF, et al. Cytotoxicity of glass ionomer cements containing silver nanoparticles. Journal of clinical and experimental dentistry. 2015;7:e622.
https://doi.org/10.4317/jced.52566

 

18. Standardization. IOf. ISO 9917:2007: Dentistry-water-based cements-part 1: powder/liquid acid-base cements. Geneva: International Organization for Standardization. 2007.

 

19. Imazato S, Kuramoto A, Takahashi Y, Ebisu S, Peters MC. In vitro antibacterial effects of the dentin primer of Clearfil Protect Bond. Dental Materials. 2006;22:527-32.
https://doi.org/10.1016/j.dental.2005.05.009
PMid:16198404

 

20. Cheng L, Zhang K, Weir MD, Melo MAS, Zhou X, Xu HH. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine. 2015;10:627-41.
https://doi.org/10.2217/nnm.14.191
PMid:25723095 PMCid:PMC4347904

 

21. Rai M, Deshmukh S, Ingle A, Gade A. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of applied microbiology. 2012;112:841-52.
https://doi.org/10.1111/j.1365-2672.2012.05253.x
PMid:22324439

 

22. Riad M, Harhash AY, Elhiny OA, Salem GA. Evaluation of the shear bond strength of orthodontic adhesive system containing antimicrobial silver nano particles on bonding of metal brackets to enamel. Life Sci J. 2015;12:27-34.

 

23. Yoshida K, Tanagawa M, Matsumoto S, Yamada T, Atsuta M. Antibacterial activity of resin composites with silver-containing materials. European Journal of Oral Sciences. 1999;107:290-6.
https://doi.org/10.1046/j.0909-8836.1999.eos107409.x
PMid:10467945

 

24. Hamouda IM. Current perspectives of nanoparticles in medical and dental biomaterials. Journal of biomedical research. 2012;26:143.
https://doi.org/10.7555/JBR.26.20120027
PMid:23554743 PMCid:PMC3596063

 

25. Gjorgievska E, Van Tendeloo G, Nicholson JW, Coleman NJ, Slipper IJ, Booth S. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microscopy and Microanalysis. 2015;21:392-406.
https://doi.org/10.1017/S1431927615000057
PMid:25691120

 

26. Moshaverinia A, Ansari S, Movasaghi Z, Billington RW, Darr JA, Rehman IU. Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dental materials. 2008;24:1381-90.
https://doi.org/10.1016/j.dental.2008.03.008
PMid:18433855

 

27. Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Progress in materials science. 2006;51:427-556.
https://doi.org/10.1016/j.pmatsci.2005.08.003

 

28. Magni E, Ferrari M, Hickel R, Ilie N. Evaluation of the mechanical properties of dental adhesives and glass-ionomer cements. Clinical oral investigations. 2010;14:79-87.
https://doi.org/10.1007/s00784-009-0259-3
PMid:19241096

 

29. Lohbauer U. Dental glass ionomer cements as permanent filling materials?–Properties, limitations and future trends. Materials. 2009;3:76-96.
https://doi.org/10.3390/ma3010076
PMCid:PMC5510173

 

30. Semyari H, Sattari M, Atai M, Pournasir M. The effect of nanozirconia mixed with glass-ionomer on proliferation of epithelial cells and adhesive molecules. Journal of Periodontology & Implant Dentistry. 2012;3:63-8.