Francisconi MF, Janson G, Henriques JFC, Freitas KMS, Francisconi PAS. Evaluation of the force generated by gradual deflection of 0.016-inch NiTi and stainless steel orthodontic wires in self-ligating metallic and esthetic brackets. J Clin Exp Dent. 2019;11(5):e464-9.

 

doi:10.4317/jced.55698

http://dx.doi.org/10.4317/jced.55698

_______________________________________________________________________________________________________

 

References

1. Birnie D. Ceramic brackets. Br J Orthod. 1990;17:71-4.
https://doi.org/10.1179/bjo.17.1.71
PMid:2178681

 

2. Tselepis M, Brockhurst P, West VC. The dynamic frictional resistance between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop. 1994;106:131-8.
https://doi.org/10.1016/S0889-5406(94)70030-3

 

3. Stolzenberg J. The efficiency of the Russell attachment. Am J Orthod Oral Surg. 1946;32:572-82.
https://doi.org/10.1016/0096-6347(46)90086-5

 

4. Shivapuja PK, Berger J. A comparative study of conventional ligation and self-ligation bracket systems. Am J Orthod Dentofacial Orthop. 1994;106:472-80.
https://doi.org/10.1016/S0889-5406(94)70069-9

 

5. Thorstenson GA, Kusy RP. Effect of archwire size and material on the resistance to sliding of self-ligating brackets with second-order angulation in the dry state. Am J Orthod Dentofacial Orthop. 2002;122:295-305.
https://doi.org/10.1067/mod.2002.126156

 

6. Burstone CJ. Variable-modulus orthodontics. Am J Orthod. 1981;80:1-16.
https://doi.org/10.1016/0002-9416(81)90192-5

 

7. De Franco DJ, Spiller RE Jr, von Fraunhofer JA. Frictional resistances using Teflon-coated ligatures with various bracket-archwire combinations. Angle Orthod. 1995;65:63-72; discussion 73-4.

 

8. D'Anto V, Rongo R, Ametrano G, Spagnuolo G, Manzo P, Martina R, et al. Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy. Angle Orthod. 2012;82:922-8.
https://doi.org/10.2319/100211-620.1
PMid:22339276

 

9. Gurgel JA, Kerr S, Powers JM, LeCrone V. Force-deflection properties of superelastic nickel-titanium archwires. Am J Orthod Dentofacial Orthop. 2001;120:378-82.
https://doi.org/10.1067/mod.2001.117200
PMid:11606962

 

10. Galvao MB, Camporesi M, Tortamano A, Dominguez GC, Defraia E. Frictional resistance in monocrystalline ceramic brackets with conventional and nonconventional elastomeric ligatures. Prog Orthod. 2013;14:9.
https://doi.org/10.1186/2196-1042-14-9
PMid:24325886 PMCid:PMC4384920

 

11. van Aken CA, Pallav P, Kleverlaan CJ, Kuitert RB, Prahl-Andersen B, Feilzer AJ. Effect of long-term repeated deflections on fatigue of preloaded superelastic nickel-titanium archwires. Am J Orthod Dentofacial Orthop. 2008;133:269-76.
https://doi.org/10.1016/j.ajodo.2005.10.030
PMid:18249294

 

12. Sakima MT, Dalstra M, Melsen B. How Does temperature influence the properties of rectangular nickel-titanium wires? Eur J Orthod. 2006;28:282-91.
https://doi.org/10.1093/ejo/cji079
PMid:16199409

 

13. Liaw YC, Su YY, Lai YL, Lee SY. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis. Am J Orthod Dentofacial Orthop. 2007;131:578 e12-8.
https://doi.org/10.1016/j.ajodo.2006.08.015
PMid:17482074

 

14. Pesce RE, Uribe F, Janakiraman N, Neace WP, Peterson DR, Nanda R. Evaluation of rotational control and forces generated during first-order archwire deflections: a comparison of self-ligating and conventional brackets. Eur J Orthod. 2014;36:245-54.
https://doi.org/10.1093/ejo/cjr119
PMid:22045693

 

15. Wilkinson PD, Dysart PS, Hood JA, Herbison GP. Load-deflection characteristics of superelastic nickel-titanium orthodontic wires. Am J Orthod Dentofacial Orthop. 2002;121:483-95.
https://doi.org/10.1067/mod.2002.121819
PMid:12045766

 

16. Ogata RH, Nanda RS, Duncanson MG Jr, Sinha PK, Currier GF. Frictional resistances in stainless steel bracket-wire combinations with effects of vertical deflections. Am J Orthod Dentofacial Orthop. 1996;109:535-42.
https://doi.org/10.1016/S0889-5406(96)70139-7

 

17. Rino NJ, Queiroz GV, de Paiva JB, Ballester RY. Does self-ligating brackets type influence the hysteresis, activation and deactivation forces of superelastic niti archwires? Dental Press J Orthod. 2013;18:81-5.
https://doi.org/10.1590/S2176-94512013000100018
PMid:23876954

 

18. Franchi L, Baccetti T, Camporesi M, Giuntini V. Forces released by nonconventional bracket or ligature systems during alignment of buccally displaced teeth. Am J Orthod Dentofacial Orthop. 2009;136:316 e1-6; discussion 316-7.
https://doi.org/10.1016/j.ajodo.2009.02.016
PMid:19732660

 

19. Montasser MA, El-Bialy T, Keilig L, Reimann S, Jager A, Bourauel C. Force levels in complex tooth alignment with conventional and self-ligating brackets. Am J Orthod Dentofacial Orthop. 2013;143:507-14.
https://doi.org/10.1016/j.ajodo.2012.11.020
PMid:23561412

 

20. Montasser MA, El-Bialy T, Keilig L, Reimann S, Jager A, Bourauel C. Force loss in archwire-guided tooth movement of conventional and self-ligating brackets. Eur J Orthod. 2014;36:31-8.
https://doi.org/10.1093/ejo/cjs110
PMid:23382468

 

21. Krishnan M, Kalathil S, Abraham KM. Comparative evaluation of frictional forces in active and passive self-ligating brackets with various archwire alloys. Am J Orthod Dentofacial Orthop. 2009;136:675-82.
https://doi.org/10.1016/j.ajodo.2007.11.034
PMid:19892284

 

22. Thorstenson GA, Kusy RP. Resistance to sliding of self-ligating brackets versus conventional stainless steel twin brackets with second-order angulation in the dry and wet (saliva) states. Am J Orthod Dentofacial Orthop. 2001;120:361-70.
https://doi.org/10.1067/mod.2001.116090
PMid:11606960

 

23. Oliver CL, Daskalogiannakis J, Tompson BD. Archwire depth is a significant parameter in the frictional resistance of active and interactive, but not passive, self-ligating brackets. Angle Orthod. 2011;81:1036-44.
https://doi.org/10.2319/122810-751.1
PMid:21699367

 

24. Cacciafesta V, Sfondrini MF, Ricciardi A, Scribante A, Klersy C, Auricchio F. Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations. Am J Orthod Dentofacial Orthop. 2003;124:395-402.
https://doi.org/10.1016/S0889-5406(03)00504-3
https://doi.org/10.1016/S0889-5406(03)00501-8

 

25. Budd S, Daskalogiannakis J, Tompson BD. A study of the frictional characteristics of four commercially available self-ligating bracket systems. Eur J Orthod. 2008;30:645-53.
https://doi.org/10.1093/ejo/cjn058
PMid:18974067

 

26. Kannan MS, Murali RV, Kishorekumar S, Gnanashanmugam K, Jayanth V. Comparison of frictional resistance of esthetic and semi-esthetic self-ligating brackets. J Pharm Bioallied Sci. 2015;7:S116-20.
https://doi.org/10.4103/0975-7406.155852
PMid:26015687 PMCid:PMC4439647

 

27. Kim TK, Kim KD, Baek SH, Comparison of frictional forces during the initial leveling stage in various combinations of self-ligating brackets and archwires with a custom-designed typodont system. Am J Orthod Dentofacial Orthop. 2008;133:187 e15-24.
https://doi.org/10.1016/j.ajodo.2007.08.013
PMid:18249279

 

28. Lee SM, Hwang CJ. A comparative study of frictional force in self-ligating brackets according to the bracket-archwire angulation, bracket material, and wire type. Korean J Orthod. 2015;45:13-9.
https://doi.org/10.4041/kjod.2015.45.1.13
PMid:25667913 PMCid:PMC4320313

 

29. Kusy RP, Whitley JQ. Influence of archwire and bracket dimensions on sliding mechanics: derivations and determinations of the critical contact angles for binding. Eur J Orthod. 1999;21:199-208.
https://doi.org/10.1093/ejo/21.2.199

 

30. Pratten DH, Popli K, Germane N, Gunsolley JC. Frictional resistance of ceramic and stainless steel orthodontic brackets. Am J Orthod Dentofacial Orthop. 1990;98:398-403.
https://doi.org/10.1016/S0889-5406(05)81647-6