Chávarri-Prado
D, Brizuela-Velasco A, Diéguez-Pereira M, Pérez-Pevida E, Jiménez-Garrudo A,
Viteri-Agustín I, Estrada-Martínez A, Montalbán-Vadillo O. Influence of
cortical bone and implant design in the primary stability of dental implants
measured by two different devices of resonance frequency analysis: An in
vitro study. J Clin Exp Dent. 2020;12(3):e242-8.
doi:10.4317/jced.56014
https://doi.org/10.4317/jced.56014
__________________________________________________
References
1.
Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated
titanium implants. Requirements for ensuring a long-lasting, direct
bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52:155-70. |
|
|
|
2.
Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, Ohman A.
Osseointegrated implants in the treatment of the edentulous jaw. Experience
from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1-132. PMid:
356184 |
|
|
|
3.
Glauser R, Sennerby L, Meredith N, Rée A, Lundgren A, Gottlow J, et al.
Resonance frequency analysis of implants subjected to immediate or early
functional occlusal loading. Successful vs. failing implants. Clin Oral
Implants Res. 2004;15:428-34. |
|
|
|
4.
Kim DS, Lee WJ, Choi SC, Lee SS, Heo MS, Huh KH, Kim TI, et al. Comparison of
dental implant stabilities by impact response and resonance frequencies using
artificial bone. Med Eng Phys. 2014;36:715-20. |
|
|
|
5.
Miyamoto I, Tsuboi Y, Wada E, Suwa H, Iizuka T. Influence of cortical bone
thickness and implant length on implant stability at the time of
surgery--clinical, prospective, biomechanical, and imaging study. Bone.
2005;37:776-80. |
|
|
|
6.
Tozum TF, Dursun E, Uysal S. Radiographic Fractal and Clinical Resonance
Frequency Analyses of Posterior Mandibular Dental Implants: Their Possible
Association With Mandibular Cortical Index With 12-Month Follow-up. Implant
Dent. 2016;25:789-95. |
|
|
|
7.
Sugiura T, Yamamoto K, Horita S, Murakami K, Tsutsumi S, Kirita T. The
effects of bone density and crestal cortical bone thickness on micromotion
and peri-implant bone strain distribution in an immediately loaded implant: a
nonlinear finite element analysis. J Periodontal Implant Sci. 2016;46:152-65. |
|
|
|
8.
I-Chiang C, Shyh-Yuan L, Ming-Chang W, Sun CW, Jiang CP. Finite element
modelling of implant designs and cortical bone thickness on stress
distribution in maxillary type IV bone. Comput Methods Biomech Biomed Engin.
2014;17:516-26. |
|
|
|
9.
Sotto-Maior BS, Lima C de A, Senna PM, Camargos G de V, Del Bel Cury AA.
Biomechanical evaluation of subcrestal dental implants with different bone
anchorages. Braz Oral Res. 2014;28. |
|
|
|
10.
Tu MG, Hsu JT, Fuh LJ, Lin DJ, Huang HL. Effects of cortical bone thickness
and implant length on bone strain and interfacial micromotion in an
immediately loaded implant. Int J Oral Maxillofac Implants. 2010;25:706-14. PMid:
20657865 |
|
|
|
11.
Davies JE. Understanding peri-implant endosseous healing. J Dent Educ.
2003;67:932-49. PMid:
12959168 |
|
|
|
12.
Abrahamsson I, Linder E, Lang NP. Implant stability in relation to
osseointegration: an experimental study in the Labrador dog. Clin Oral
Implants Res. 2009;20:313-18. |
|
|
|
13.
Nedir R, Bischof M, Szmukler-Moncler S, Bernard JP, Samson J. Predicting
osseointegration by means of implant primary stability. Clin Oral Implants
Res. 2004;15:520-28. |
|
|
|
14.
Sjostrom M, Lundgren S, Nilson H, Sennerby L. Monitoring of implant stability
in grafted bone using resonance frequency analysis. A clinical study from
implant placement to 6 months of loading. Int J Oral Maxillofac Surg. 2005;34:45-51. PMid:
15617966 |
|
|
|
15.
Swami V, Vijayaraghavan V, Swami V. Current trends to measure implant
stability. J Indian Prosthodont Soc. 2016;16:124-30. |
|
|
|
16.
Santamaría-Arrieta G, Brizuela-Velasco A, Fernández-González FJ,
Chávarri-Prado D, Chento-Valiente Y, Solaberrieta E, Diéguez-Pereira M, et
al. Biomechanical evaluation of oversized drilling technique on primary
implant stability measured by insertion torque and resonance frequency analysis.
J Clin Exp Dent. 2016;8:307-11. |
|
|
|
17.
Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability
of the implant-tissue interface using resonance frequency analysis. Clin Oral
Implants Res. 1996;7:261-67. |
|
|
|
18.
Brizuela-Velasco A, Alvarez-Arenal A, Gil-Mur FJ, Herrero-Climent M,
Chávarri-Prado D, Chento-Valiente Y, Dieguez-Pereira M. Relationship Between
Insertion Torque and Resonance Frequency Measurements, Performed by Resonance
Frequency Analysis, in Micromobility of Dental Implants: An In Vitro Study.
Implant Dent. 2015;24:607-11. |
|
|
|
19.
Park KJ, Kwon JY, Kim SK, Heo SJ, Koak JY, Lee JH, et al. The relationship
between implant stability quotient values and implant insertion variables: a
clinical study. J Oral Rehabil. 2012;39:151-9. https://doi.org/10.1111/j.1365-2842.2011.02255.x |
|
20.
Meredith N. Assessment of implant stability as a prognostic determinant. Int
J Prosthodont. 1998;11:491-501. PMid:
9922740 |
|
|
|
21.
FA C. Clinical Diagnosis in Glickman ́s Clinical Periodontology. (W.B.
Saunders, ed.). Philadelphia; 1990. |
|
|
|
22.
Brizuela-Velasco A, García-Anduaga G, Solaberrieta-Méndez E, Martín-Blanco N,
Chento-Valiente Y, Álvarez-Arenal A, et al. Assesing dental implant stability
using acoustic sound analysis. Dyna. 2016;91:1-6. |
|
|
|
23.
Schulte W, Lukas D. The Periotest method. Int Dent J. 1992;42:433-40. PMid:
1286926 |
|
|
|
24.
Isidor F. Mobility assessment with the Periotest system in relation to
histologic findings of oral implants. Int J Oral Maxillofac Implants. 1998;13:377-83. PMid:
9638008 |
|
|
|
25.
Salonen MA, Raustia AM, Kainulainen V, Oikarinen KS. Factors related to
Periotest values in endosseal implants: a 9-year follow-up. J Clin Periodontol.
1997;24:272-7. |
|
|
|
26.
Drago CJ. A prospective study to assess osseointegration of dental endosseous
implants with the Periotest instrument. Int J Oral Maxillofac Implants.
2000;15:389-95. PMid:
10874804 |
|
|
|
27.
Corso M, Sirota C, Fiorellini J, Rasool F, Szmukler-Moncler S, Weber HP.
Clinical and radiographic evaluation of early loaded free-standing dental
implants with various coatings in beagle dogs. J Prosthet Dent. 1999;82:428-35. PMid:
10512961 |
|
|
|
28.
Tricio J, Laohapand P, van Steenberghe D, Quirynen M, Naert I. Mechanical
state assessment of the implant-bone continuum: a better understanding of the
Periotest method. Int J Oral Maxillofac Implants. 1995;10:43-49. PMid:
7615316 |
|
|
|
29.
Ohta K, Takechi M, Minami M, Shigeishi H, Hiraoka M, Nishimura M, et al. Influence
of factors related to implant stability detected by wireless resonance
frequency analysis device. J Oral Rehabil. 2010;37:131-7. |
|
|
|
30.
Sencimen M, Gulses A, Ozen J, Dergin C, Okçu KM, Ayyıldız S, et al. Early
detection of alterations in the resonance frequency assessment of oral
implant stability on various bone types: a clinical study. J Oral Implantol.
2011;37:411-9. |
|
|
|
31.
Buyukguclu G, Ozkurt-Kayahan Z, Kazazoglu E. Reliability of the Osstell
Implant Stability Quotient and Penguin Resonance Frequency Analysis to
Evaluate Implant Stability. Implant Dent. 2018;27:429-33. |
|
|
|
32.
Becker W, Hujoel P, Becker BE. Resonance frequency analysis: Comparing two
clinical instruments. Clin Implant Dent Relat Res. 2018;20:308-12. |
|
|
|
33.
Ahn SJ, Leesungbok R, Lee SW, Heo YK, Kang KL. Differences in implant
stability associated with various methods of preparation of the implant bed:
An in vitro study. J Prosthet Dent. 2012;107:366-72. PMid:
22633592 |
|
|
|
34.
Devlin H, Horner K, Ledgerton D. A comparison of maxillary and mandibular
bone mineral densities. J Prosthet Dent. 1998;79:323-27. PMid:
9553887 |
|
|
|
35.
Brizuela-Velasco A, Fernández-González F, Martín Blanco N, Chávarri-Prado D,
Chento-Valiente Y, Dehesa-Ibarra B VJ. Accuracy of Resonance Frequency
Analysis by Third Generation Osstell®. Int J Odontostomat. 2015;9:489-92. |
|
|
|
36.
Hsu JT, Huang HL, Chang CH, Tsai MT, Hung WC, Fuh LJ. Relationship of
three-dimensional bone-to-implant contact to primary implant stability and
peri-implant bone strain in immediate loading: microcomputed tomographic and
in vitro analyses. Int J Oral Maxillofac Implants. 2013;28:367-74. |
|
|
|
37.
Wang TM, Lee MS, Wang JS, Lin LD. The effect of implant design and bone
quality on insertion torque, resonance frequency analysis, and insertion
energy during implant placement in low or low- to medium-density bone. Int J
Prosthodont. 2015;28:40-47. |
|
|
|
38.
Kim JH, Kim Y, Shin SJ, Park JW, Jung IY. Tooth discoloration of immature
permanent incisor associated with triple antibiotic therapy: a case report. J
Endod. 2010;36:1086-91. |
|
|
|
39.
Lee SY, Kim SJ, An HW, Kim HS, Ha DG, Ryo KH, Park KB. The effect of the
thread depth on the mechanical properties of the dental implant. J Adv
Prosthodont. 2015;7:115-21. |
|
|
|
40.
Tabassum A, Meijer GJ, Wolke JGC, Jansen JA. Influence of surgical technique
and surface roughness on the primary stability of an implant in artificial
bone with different cortical thickness: a laboratory study. Clin Oral
Implants Res. 2010;21:213-20. |
|
|
|
41.
Ueda M, Matsuki M, Jacobsson M, Tjellstrom A. Relationship between insertion
torque and removal torque analyzed in fresh temporal bone. Int J Oral
Maxillofac Implants. 1991;6:442-7. PMid:
1820313 |