Aydın N, Karaoğlanoğlu S, Aybala-Oktay E, Çetinkaya S, Erdem O. Investigation of water sorption and aluminum releases from high viscosity and resin modified glass ionomer. J Clin Exp Dent. 2020;12(9):e844-51.

 

doi:10.4317/jced.56381

https://doi.org/10.4317/jced.56381

_________________________

 

References

1. Wilson AD, Kent BE, Clinton D, Miller RP. The formation and microstructure of dental silicate cements. J Mater Sci. 1972;7:220-38.
https://doi.org/10.1007/BF02403512

 

2. Nicholson JW. Chemistry of glass-ionomer cements: a review. Biomaterials. 1998;19:485-94.
https://doi.org/10.1016/S0142-9612(97)00128-2

PMid:9645554

 

3. Sidhu SK, Nicholson JW. A review of glass-ionomer cements for clinical dentistry. J Funct Biomater. 2016;7:1-16.
https://doi.org/10.3390/jfb7030016
PMid:27367737 PMCid:PMC5040989

 

4. Crowley CM, Doyle J, Towler MR, Hill RG, Hampshire S. The influence of capsule geometry amd cement formulation on the apparent viscosity of dental cements. J Dent. 2006;34:566-73.
https://doi.org/10.1016/j.jdent.2005.08.009
PMid:16567031

 

5. Yap A, Lee CM. Water sorption and solubility of resin-modified polyalkenoate cements. J Oral Rehabil. 1997;24:310-4.
https://doi.org/10.1046/j.1365-2842.1997.d01-282.x
PMid:9147305

 

6. Iwami Y, Yamamoto H, Sato W, Kawai K, Torii M, Ebisu S. Weight change of various lightcured restorative materials after water immersion. Oper Dent. 1998:23:132-7.

PMid:9656924

 

7. Miyazaki M, Moore BK, Onose H. Effect of surface coatings on flexural properties of glass ionomers. Eur J Oral Sci. 1996;104:600-4.
https://doi.org/10.1111/j.1600-0722.1996.tb00148.x
PMid:9021332

 

8. Hotta M, Hirukawa H, Yamamoto K. Effect of coating materials on restorative glass-ionomer cement surface. Oper Dent. 1992;17:57-61.

PMid:1437688

 

9. Savarino L, Cervellati M, Stea S, Cavedagna D, Donati ME, Pizzoferrato A, et al. In vitro investigation of aluminum and fluoride release from compomers, conventional and resin-modified glass-ionomer cements: A standardized approach. J Biomater Sci Polymer Edn. 2000;11:289-600.
https://doi.org/10.1163/156856200743706
PMid:10841280

 

10. Kumar V, Gill KD. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicol. 2014;41:154-66.
https://doi.org/10.1016/j.neuro.2014.02.004
PMid:24560992

 

11. Han S, Lemire J, Appanna VP, Christopher A, Zachary C, Vasu DA. How aluminum, an intracellular ROS generator promotes hepatic and neurological diseases: the metabolic tale. Cell Biol Toxicol. 2013;29:75-84.
https://doi.org/10.1007/s10565-013-9239-0
PMid:23463459

 

12. Forsten L. Fluoride release and uptake by glass-ionomers and related materials and its clinical effect. Biomaterials. 1998;19:503-8.
https://doi.org/10.1016/S0142-9612(97)00130-0

PMid:9645556

 

13. Nakajima H, Komatsu H, Okabe T. Aluminum ions in analysis of released fluoride from glass ionomers. J Dent. 1997;25:137-44.
https://doi.org/10.1016/S0300-5712(96)00021-8

PMid:9105145

 

14. International Organization for Standardization. ISO 4049:2009 - Polymer-based restorative materials. Geneva: ISO; 2009.

 

15. Kleverlaan CJ, Duinen RNB, Feilzer AJ. Mechanical properties of glass ionomer cements affected by curing methods. Dent Mater. 2004;20:45-0.
https://doi.org/10.1016/S0109-5641(03)00067-8

PMid:14698773

 

16. Lohbauer U. Dental glass ionomer cements as permanent filling materials? - properties, limitations and future trends. Materials. 2010;3:76-96.
https://doi.org/10.3390/ma3010076
PMCid:PMC5510173

 

17. Muller JA, Rohr N, Fischer J. Evaluation of ISO 4049: water sorption and water solubility of resin cements. Eur J Oral Sci. 2017;125:141-50.
https://doi.org/10.1111/eos.12339
PMid:28224754

 

18. Lıma RBW, Farıas JFG, Andrade AKM, Sılva FDS da CM, Duarte RM. Water sorption and solubility of glass ionomer cements indicated for atraumatic restorative treatment considering the time and the pH of the storage solution. Rev Gaúch Odontol. 2018;66:29-34.
https://doi.org/10.1590/1981-863720180001000043100

 

19. Cefaly DFG, Wang L, Mello LLCP, Santos JL, Santos JR, Lauris JRP. Water sorption of resin-modified glass-ionomer cements photoactivated with LED. Braz Oral Res. 2006;20:342-6.
https://doi.org/10.1590/S1806-83242006000400011
PMid:17242796

 

20. Mortier E, Gerdolle DA Jacquot B, Panighi MM. Importance of water sorption and solubility studies for couple bonding agent- resin based filling material. Oper Dent. 2004;29: 669-76.

PMid:15646223

 

21. Beriata NC, Nalbant D. Water absorption and HEMA release of resin-modified glass-ıonomers. Eur J Dent. 2009;3:267-72.
https://doi.org/10.1055/s-0039-1697443

PMid:19826597 PMCid:PMC2761156

 

22. Lohbauer U, Kramer N, Siedeschlag G, Schubert EW, Laurer B, Müller FA, et al. Strength and wear resistance of a dental glass ionomer cement with a novel nanofilled resin coating. Am J Dent. 2011;24:124-8.

PMid:21698994

 

23. Hankins AD, Hatch RH, Benson JH, Blen BJ, Tantbirojn D, Versluis A. The effect of a nanofilled resin-based coating on water absorption by teeth restored with glass ionomer. JADA. 2014;145:363-70.
https://doi.org/10.14219/jada.2043.3
PMid:24686970

 

24. Versluis A, Tantbirojn D, Lee MS, Tu LS, DeLong R. Can hygroscopic expansion compensate polymerization shrinkage? Part I. Deformation of restored teeth. Dent Mater. 2011;27:126-33.
https://doi.org/10.1016/j.dental.2010.09.007
PMid:20970176

 

25. Karaoglanoglu S, Akgül N, Özdabak HN, Akgül HM. Effectiveness of surface protection for glass-ionomer, resin-modified glass-ionomer and polyacid-modified composite resins. Dent Mater J. 2009;28:96-101.
https://doi.org/10.4012/dmj.28.96
PMid:19280974

 

26. Kanik Ö, Turkun LS, Dasch W. In vitro abrasion of resin-coated highly viscous glass ionomer cements: a confocal laser scanning microscopy study. Clin Oral Invest. 2016;21:821-9.
https://doi.org/10.1007/s00784-016-1820-5
PMid:27073101

 

27. Bonifacio CC, Werner A, Kleverlaan CJ. Coating glassionomer cements with a nanofilled resin. Acta Odontol Scand. 2012;70:471-7.
https://doi.org/10.3109/00016357.2011.639307
PMid:22149968

 

28. Pires RA, Nunes TG, Abrahams I, Hawkes GE. The role of aluminium and silicon in the setting chemistry of glass ionomer cements. J Mater Sci Mater Med. 2007;19:1687-92.
https://doi.org/10.1007/s10856-007-3251-y
PMid:17914623

 

29. Wills MR, Hewitt CD, Sturgill BC, Savory J, Herman MM. Long-term oral or intravenous aluminum administration in rabbits. I. Renal and hepatic changes. Ann Clin Lab Sci. 1993;23:1-16.

PMid:7679266

 

30. Sahin G, Varol I, Temizer A. Determination of aluminum levels in the kidney, liver, and brain of mice treated with aluminum hydroxide. Biol Trace Elem Res. 1994;41:129-35
https://doi.org/10.1007/BF02917223
PMid:7946900

 

31. Monteagudo FSE, Cassidy MJD, Folb PI. Recent developments in aluminium toxicology Med Toxicol Adverse Drug Exp. 1989;4:1-16
https://doi.org/10.1007/BF03259899
PMid:2651849

 

32. Kaur A, Joshi K, Minz RW, Gill KD. Neurofilament phosphorylation and disruption: a possible mechanism of chronic aluminium toxicity in wistar rats. Toxicology. 2006;219:1-10
https://doi.org/10.1016/j.tox.2005.09.015
PMid:16413955

 

33. Walton JR. Brain lesions comprised of aluminum-rich cells that lack microtubules may be associated with the cognitive deficit of Alzheimer's disease. Neurotoxicology. 2009;30:1059-69
https://doi.org/10.1016/j.neuro.2009.06.010
PMid:19591863

 

34. Gjorgievska E, Nicholson JW, Gjorgovski I, Iljovska S. Aluminium and fluoride release into artificial saliva from dental restoratives placed in teeth. J Mater Sci Mater Med. 2008;19:3163-7.
https://doi.org/10.1007/s10856-008-3452-z
PMid:18437535

 

35. Czarnecka B, Limanowska-Shaw H, Nicholson JW. Buffering and ion-release by a glass-ionomer cement under nearneutral and acidic conditions. Biomaterials. 2002;23:2783-8.
https://doi.org/10.1016/S0142-9612(02)00014-5

PMid:12059029

 

36. Czarnecka B, Limanowska-Shaw H, Hatton R, Nicholson JW. Ion release by endodontic grade glass-ıonomer cement, J Mater Sci Mater Med. 2007;18:649-52.
https://doi.org/10.1007/s10856-007-2315-3
PMid:17546427

 

37. Okte Z, Bayrak S, Fidancı UR, Sel T. Fluoride and aluminum release from restorative materials using ion chromatography. J Appl Oral Sci. 2012;20:27-31.
https://doi.org/10.1590/S1678-77572012000100006
PMid:22437674 PMCid:PMC3928768

 

38. Yamanel K. Glass ionomer cements. Turkiye Klinikleri J Restor Dent-Special Topics. 2017;3:138-50.

1. Albandar JM. Global risk factors and risk indicators for periodontal diseases. Periodontol 2000. 2002;29:177-206.
https://doi.org/10.1034/j.1600-0757.2002.290109.x
PMid:12102708

 

 

2. Gomes-Filho IS, Coelho JMF, Cruz SS, Passos JS, Freitas COT, Farias NSA, et al. Chronic periodontitis and C-reactive protein levels. J Periodontol. 2011;82:969-978.
https://doi.org/10.1902/jop.2010.100511
PMid:21189085

 

3. Bansal T, Dhruvakumar D, Pandey A. Comparative evaluation of C-reactive protein in peripheral blood of patients with healthy gingiva, gingivitis and chronic periodontitis: A clinical and particle-ennanced turbidimetric immuno-analysis. J Indian Soc Periodontol. 2014;18:739-743.
https://doi.org/10.4103/0972-124X.147410
PMid:25624631 PMCid:PMC4296459

 

4. Tawfig A. Effects of non-surgical periodontal therapy on serum lipids and C-reactive protein among hyperlipidemic patients with chronic periodontitis. J Int Soc Prevent Communit Dent. 2015;5:49-56.
https://doi.org/10.4103/2231-0762.156524
PMid:25984468 PMCid:PMC4428020

 

5. Demmer RT, Trinquart L, Zuk A, Fu BC, Blomkvist J, Michalowicz BS, et al. The influence of anti-infective periodontal treatment on C-reactive protein: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2013;8:e77441.
https://doi.org/10.1371/journal.pone.0077441
PMid:24155956 PMCid:PMC3796504

 

6. Quintero AJ, Chaparro A, Quirynen M, Ramirez V, Prieto D, Morales H, et al. Effect of two periodontal treatment modalities in patients with uncontrolled type 2 diabetes mellitus: A randomized clinical trial. J Clin Periodontol. 2018;45:1098-1106.
https://doi.org/10.1111/jcpe.12991
PMid:30024030

 

7. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61:344-9.
https://doi.org/10.1016/j.jclinepi.2007.11.008
PMid:18313558

 

8. Tomar SL, Asma S. Smoking-attributable periodontitis in the United States: findings from NHANES III. J Periodontol. 2000;71:743-751.
https://doi.org/10.1902/jop.2000.71.5.743

PMid:10872955

 

9. Costa FO, Cota LOM, Costa JE, Pordeus IA. Periodontal disease progression among young subjects with no preventive dental care: A 52-month follow-up study. J Periodontol. 2007;78:198-203.
https://doi.org/10.1902/jop.2007.060150
PMid:17274706

 

10. Ndrepepa G, Siegmund B, Salvatore C, Fusaro M, King L, Kastrati A, et al. C-reactive protein and prognosis in women and men with coronary artery disease after percutaneous coronary intervention. Cardiovasc Revasc Med. 2013;14:264-269.
https://doi.org/10.1016/j.carrev.2013.07.002
PMid:23969223

 

11. Torrungruang K, Ongphiphadhanakul B, Jitpakdeebordin S, Sarujikumjornwatana S. Mediation analysis of systemic inflammation on the association between periodontitis and glycaemic status. J Clin Periodontol. 2018;45:548-556.
https://doi.org/10.1111/jcpe.12884
PMid:29500831

 

12. Bolla V, Kumari PS, Munnangi SR, Kumar DS, Durgabai Y, Koppolu P. Evaluation of Serum C-reactive Protein Levels in Subjects with Aggressive and Chronic Periodontitis in Comparison with Healthy Controls: A Clinico-biochemical Study. Int J App Basic Med Res. 2017;7:121-124.
https://doi.org/10.4103/2229-516X.205814
PMid:28584744 PMCid:PMC5441260

 

13. Chandy S, Joseph K, Sankaranarayanan A, Issac A, Babu G, Wilson B, et al. Evaluation of C-Reactive Protein and Fibrinogen in Patients with Chronic and Aggressive Periodontitis: A Clinico-Biochemical Study. J Clin Diagn Res. 2017;11:ZC41-ZC45.
https://doi.org/10.7860/JCDR/2017/23100.9552
PMid:28511507 PMCid:PMC5427433

 

14. de Souza AB, Okawa RT, Silva CO, Araújo MG. Short-term changes on C-reactive protein (CRP) levels after non-surgical periodontal treatment in systemically healthy individuals. Clin Oral Investig. 2017;21:477-484.
https://doi.org/10.1007/s00784-016-1817-0
PMid:27068411

 

15. Ramich T, Asendorf A, Nickles K, Oremek GM, Schubert R, Nibali L, et al. Inflammatory serum markers up to 5 years after comprehensive periodontal therapy of aggressive and chronic periodontitis. Clin Oral Investig. 2018;22:3079-3089.
https://doi.org/10.1007/s00784-018-2398-x
PMid:29484548 PMCid:PMC6224024

 

16. Sezgin Y, Bulut Ş, Bozalıoğlu S, Sezgin A. Levels of High-Sensitivity C-Reactive Protein in Heart Transplant Patients With and Without Periodontitis. Exp Clinical Transplant. 2019;17:123-127.
https://doi.org/10.6002/ect.MESOT2018.O65
PMid:30777536

 

17. Winning L, Patterson CC, Cullen KM, Stevenson KA, Lundy FT, Kee F, et al. The association between subgingival periodontal pathogens and systemic inflammation. J Clin Periodontol. 2015;42:799-806.
https://doi.org/10.1111/jcpe.12450
PMid:26309048

 

18. Torrungruang K, Katudat D, Mahanonda R, Sritara P, Udomsak A. Periodontitis is associated with elevated serum levels of cardiac biomarkers-soluble ST2 and C-reactive protein. J Clin Periodontol. 2019;46:809-818.
https://doi.org/10.1111/jcpe.13149
PMid:31125449

 

19. Gupta B, Sawhney A, Patil N, Yadav M, Tripathi S, Sinha S, et al. Effect of Surgical Periodontal Therapy on Serum C-reactive Protein Levels Using ELISA in Both Chronic and Aggressive Periodontitis Patient. J Clin Diagn Res 2015;9:ZC01-5.
https://doi.org/10.7860/JCDR/2015/14680.6558
PMid:26557605 PMCid:PMC4625324

 

20. Podzimek S, Mysak J, Janatova T, Duskova J. C-Reactive Protein in Peripheral Blood of Patients with Chronic and Aggressive Periodontitis, Gingivitis, and Gingival Recessions. Mediators Inflamm. 2015;564858.
https://doi.org/10.1155/2015/564858
PMid:26346216 PMCid:PMC4539496

 

21. Mysak J, Podzimek S, Vasakova J, Mazanek J, Vinsu A, Duskova J. C-reactive protein in patients with aggressive periodontitis. J Dent Sci. 2017;12:368-374.
https://doi.org/10.1016/j.jds.2017.04.003
PMid:30895077 PMCid:PMC6395364

 

22. Paraskevas S, Huizinga JD, Loos BG. A systematic review and meta-analyses on c-reactive protein in relation to periodontitis. J Clin Periodontol. 2008;35:277-290.
https://doi.org/10.1111/j.1600-051X.2007.01173.x
PMid:18294231

 

23. Escobar GF, Abdalla DR, Beghini M, Gotti VB, Rodrigues Junior V, Napimoga MH, et al. Levels of Pro and Anti-inflammatory Citokynes and C-Reactive Protein in Patients with Chronic Periodontitis Submitted to Nonsurgical Periodontal Treatment. Asian Pacific J Cancer Prev. 2018;19:1927-1933.

PMid:30051674 PMCid:PMC6165634

 

24. Yamazaki K, Honda T, Oda T, Ueki-Maruyama K, Nakajima T, Yoshie H, et al. Effect of periodontal treatment on the C-reactive protein and proinflammatory cytokine levels in Japanese periodontitis patients. J Periodontal Res. 2002;40:53-58.
https://doi.org/10.1111/j.1600-0765.2004.00772.x
PMid:15613080

 

25. American Academy of Periodontology. Position paper: epidemiology of periodontal diseases. J Periodontol. 1996;67:935-945.

PMid:8884652

 

26. Fantuzzi G, Mazzone T. Adipose Tissue and Atherosclerosis: Exploring the Connection. Arterioscler Thromb Vasc Biol. 2007;27:996-1003.
https://doi.org/10.1161/ATVBAHA.106.131755
PMid:17303782

 

27. Pataro AL, Costa FO, Cortelli SC, Cortelli JR, Souza ACD, Abreu MHNG, et al. Influence of Obesity and Bariatric Surgery on the Periodontal Condition. J Periodontol. 2012;83:257-266.
https://doi.org/10.1902/jop.2011.100782
PMid:21721989

 

28. Woloshin S, Schwartz LM. Distribution of C-reactive protein values in the United States. N Engl J Med. 2005;352:1611-1613.
https://doi.org/10.1056/NEJM200504143521525
PMid:15829550

 

29. Kinane DF, Riggio MP, Walker KF, MacKenzie D, Shearer B. Bacteraemia following periodontal procedures. J Clin Periodontol. 2005;32:708-713.
https://doi.org/10.1111/j.1600-051X.2005.00741.x
PMid:15966875

 

30. Costa FO, Guimarães AN, Cota LOM, Pataro AL, Segundo TK, Cortelli SC, et al. Impact of different periodontitis case definitions on periodontal research. J Oral Sci. 2009;51:199-206.
https://doi.org/10.2334/josnusd.51.199
PMid:19550087

1. Moy PK, Lundgren S, Holmes RE. Maxillary sinus augmentation: Histomorphometric analysis of graft materials for maxillary sinus floor augmentation. J Oral Maxillofac Surg. 1993;51:857-62.
https://doi.org/10.1016/S0278-2391(10)80103-X

PMid:8393101

 

 

2. Browaeys H, Bouvry P, De Bruyn H. A literature review on biomaterials in sinus lift procedures. Clin Implant Dent Relat Res. 2007;9:166-77.
https://doi.org/10.1111/j.1708-8208.2007.00050.x
PMid:17716261

 

3. Pjetursson BE, Tan WC, Zwahlen M, Lang NP. A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation. Part I: Lateral approach. J Clin Periodontol. 2008;35:216-40.
https://doi.org/10.1111/j.1600-051X.2008.01272.x
PMid:18724852

 

4. Chackartchi T, Iezzi G, Goldstein M, Klinger A, Soskolne A, Piattelli A, et al. Sinus floor lift using large (1-2 mm) or small (0.25-1 mm) bovine bone mineral particles: a prospective. intra-individual controlled clinical. micro-computerized tomography and histomorphometric study. Clin Oral Implants Res. 2011;22:473-80.
https://doi.org/10.1111/j.1600-0501.2010.02032.x
PMid:21087317

 

5. Kühl S, Brochhausen C, Götz H, Filippi A, Payer M, d'Hoedt B, et al. The influence of bone substitute materials on the bone volume after maxillary sinus augmentation: a micro computerized tomography study. Clin Oral Investig. 2013;17:543-51.
https://doi.org/10.1007/s00784-012-0732-2
PMid:22538473

 

6. Hürzeler MB, Quiñones CR, Kirsch A, Gloker C, Schüpbach P, Strub JR, et al. Maxillary sinus augmentation using different grafting materials and dental implants in monkeys. Part I. Evaluation of anorganic bovine-derived bone matrix. Clin Oral Implants Res. 1997;8:476-86.
https://doi.org/10.1034/j.1600-0501.1997.080606.x
PMid:9580407

 

7. Nystrom E, Legrell PE, Forssell A, Kahnberg KE. Combined use of bone grafts and implants in the severely resorbed maxilla: postoperative evaluation by computed tomography. Int J Oral Maxillofac Surg. 1995;24:20-5.
https://doi.org/10.1016/S0901-5027(05)80851-3

PMid:7782636

 

8. Peleg M, Mazor Z, Garg AK. Augmentation grafting of the maxillary sinus and simultaneous implant placement in patients with 3 to 5 mm of residual alveolar bone height. Int J Oral Maxillofac Implants. 1999;14:549-56.

PMid:10453671

 

9. Jonhansson B, Grepe A, Wannfors K, Aberg P, Hirsch JM. Volumetry of simulated bone grafts in edentulous maxilla by computed tomography: an experimental study. Dentomaxillofac Radiol. 2001;30:153-6.
https://doi.org/10.1038/sj.dmfr.4600600

PMid:11420627

 

10. Sbordone C, Toti P, Guidetti F, Califano L, Bufo P, Sbordone L. Volume changes of autogenous bone after sinus lifting and grafting procedures: a 6-year computerized tomographic follow-up. J Craniomaxillofac Surg. 2013;41:235-41.
https://doi.org/10.1016/j.jcms.2012.09.007
PMid:23084768

 

11. Cosso MG, de Brito RB Jr, Piattelli A, Shibli JA, Zenóbio EG. Volumetric dimensional changes of autogenous bone and the mixture of hydroxyapatite and autogenous bone graft in humans maxillary sinus augmentation. A multislice tomographic study. Clin Oral Implants Res. 2014;25:1251-6.
https://doi.org/10.1111/clr.12261
PMid:24102867

 

12. Silva KC, Zenóbio EG, Souza PEA, Soares RV, Cosso MG, Horta MCR. Assessment of Dental Implant Stability in Areas Previously Submitted to Maxillary Sinus Elevation. J Oral Implantol. 2018;44:109-13.
https://doi.org/10.1563/aaid-joi-D-17-00094
PMid:29303412

 

13. Favato MN, Vidigal BCL, Cosso MG, Manzi FR, Shibli JA, Zenóbio EG. Impact of human maxillary sinus volume on grafts dimensional changes used in maxillary sinus lift: a multislice tomographic study. Clin Oral Implants Res. 2015;26:1450-5.
https://doi.org/10.1111/clr.12488
PMid:25283800

 

14. Gultekin BA, Cansiz E, Borahan O, Mangano C, Kolerman R, Mijiritsky E, et al. Evaluation of volumetric changes of augmented maxillary sinus with different bone grafting biomaterials. J Craniofac Surg. 2016;27:144-8.
https://doi.org/10.1097/SCS.0000000000002393
PMid:26890457

 

15. Testori T, Wallace SS, Trisi P, Capelli M, Zuffetti F, Del Fabbro M. Effect of xenograft (ABBM) particle size on vital bone formation following maxillary sinus augmentation: a multicenter, randomized, controlled, clinical histomorphometric trial.. Int J Periodontics Restorative Dent. 2013;33:467-75.
https://doi.org/10.11607/prd.1423
PMid:23820706

 

16. Stiller M, Kluk E, Bohner M, Lopez-Heredia MA, Müller-Mai C, Knabe C. Performance of β-tricalcium phosphate granules and putty, bone grafting materials after bilateral sinus floor augmentation in humans. Biomaterials. 2014;35:3154-63.
https://doi.org/10.1016/j.biomaterials.2013.12.068
PMid:24439419

 

17. Berberi A, Bouserhal L, Nader N, Assaf RB, Nassif NB, Bouserhal J, et al. Evaluation of three-dimensional volumetric changes after sinus floor lift with mineralized cortical bone allograft. J Maxillofac Oral Surg. 2015;14:624-9.
https://doi.org/10.1007/s12663-014-0736-3
PMid:26225054 PMCid:PMC4511887

 

18. Gorla LFO, Spin-Neto R, Boos FBDJ, Pereira RS, Garcia Junior IR, Hochuli-Vieira E. Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: a prospective randomized volumetric computed tomography study. Int J Oral Maxillofac Surg. 2015;44:1486-91.
https://doi.org/10.1016/j.ijom.2015.07.003
PMid:26232120

 

19. Xavier SP, Dias RR, Sehn FP, Kahn A, Chaushu L, Chaushu G. Maxillary sinus grafting with autograft vs.fresh frozen allograft: a split-mouth histomorphometric study. Clin Oral Implants Res. 2015;26:1080-5.
https://doi.org/10.1111/clr.12404
PMid:24734909

 

20. Kolerman R, Tal H, Moses O. Histomorphometric analysis of newly formed bone after maxillary sinus floor augmentation using ground cortical bone allograft and internal collagen membrane. J Periodontol. 2008;79:2104-11.
https://doi.org/10.1902/jop.2008.080117
PMid:18980519

 

21. Soardi CM, Spinato S, Zaffe D, Wang HL. Atrophic maxillary floor augmentation by mineralized human bone allograft in sinuses of different size: an histologic and histomorphometric analysis. Clin Oral Implants Res. 2011;22:560-6.
https://doi.org/10.1111/j.1600-0501.2010.02034.x
PMid:21143532

 

22. Doud Galli SK, Lebowitz RA, Giacchi RJ, Glickman R, Jacobs JB. Chronic sinusitis complicating sinus lift surgery. Am J Rhinol. 2001;15: 181-6.
https://doi.org/10.2500/105065801779954120
PMid:11453505

 

23. Barone A, Santini S, Sbordone L, Crespi R, Covani U. A clinical study of the outcomes and complications associated with maxillary sinus augmentation. Int J Oral Maxillofac Implants. 2006;21:81-5.

PMid:16519185

 

24. Carmeli G, Artzi Z, Kozlovsky A, Segev Y, Landsberg R. Antral computerized tomography pre-operative evaluation: relationship between mucosal thickening and maxillary sinus function. Clin. Oral Impl. Res. 2011;22:78-82.
https://doi.org/10.1111/j.1600-0501.2010.01986.x
PMid:20946209

 

25. Shanbhag S, Shanbhag V, Stavropoulos A. Volume changes of maxillary sinus augmentation over time: a systematic review. Int J Oral Maxillofac Implants. 2014;29:881-92.
https://doi.org/10.11607/jomi.3472
PMid:25032768

 

26. Khatiblou F. Histologic and histometric evaluation of bovine cancellous bone and beta-tricalcium phosphate 45 months after grafting in maxillary sinus. J Oral Implantol. 2011;37:727-33.
https://doi.org/10.1563/AAID-JOI-D-10-00093
PMid:20942658

 

27. Kirmeier R, Payer M, Wehrschuetz M, Jakse N, Platzer S, Lorenzoni M. Evaluation of three-dimensional changes after sinus floor lift with different grafting materials. Clin Oral Implants Res. 2008;19:366-72.
https://doi.org/10.1111/j.1600-0501.2007.01487.x
PMid:18324958

 

28. Klijn RJ, van den Beucken JJ, Bronkhorst EM, Berge SJ, Meijer GJ, Jansen JA. Predictive value of ridge dimensions on autologous bone graft resorption in staged maxillary sinus augmentation surgery using Cone-Beam CT. Clin Oral Implants Res. 2012;23:409-15.
https://doi.org/10.1111/j.1600-0501.2011.02342.x
PMid:22092724

 

29. Arasawa M, Oda Y, Kobayashi T, Uoshima K, Nishiyama H, Hoshina H, et al. Evaluation of bone volume Changes after sinus floor augmentation with autogenous bone grafts. Int J Oral Maxillofac Surg. 2012;41:853-7.
https://doi.org/10.1016/j.ijom.2012.01.020
PMid:22551647

 

30. Kim ES, Moon SY, Kim SG, Park HC, Oh JS. Three-dimensional volumetric analysis after sinus grafts. Implant Dent. 2013;22:170-4.
https://doi.org/10.1097/ID.0b013e31827f3576
PMid:23399787