Ionta FQ,
Bassoto MAG, dos Santos NM, Di Campli F, Honório HM, Cruvinel T, Buzalaf MAR,
Rios D. Effect of in situ aspartame mouthwash to prevent intrinsic and
extrinsic erosive tooth wear. J Clin Exp Dent. 2020;12(7):e638-43.
doi:10.4317/jced.56857
https://doi.org/10.4317/jced.56857
____________________________________________
References
1.
Shellis RP, Ganss C, Ren Y, Zero DT, Lussi A. Methodology and models in
erosion research: discussion and conclusions. Caries Res. 2011;45:69-77. |
|
|
|
2.
Shellis RP, Addy M. The interactions between attrition, abrasion and erosion
in tooth wear. Monogr Oral Sci. 2014;25:32-45. |
|
|
|
3.
Moazzez R, Bartlett D. Intrinsic causes of erosion. Monogr Oral Sci.
2014;25:180-96. |
|
|
|
4.
Lussi A, Carvalho TS. Erosive tooth wear: a multifactorial condition of
growing concern and increasing knowledge. Monogr Oral Sci. 2014;25:1-15. |
|
|
|
5.
Brusius CD, Alves LS, Susin C, Maltz M. Dental erosion among South Brazilian
adolescents: A 2.5-year longitudinal study. Community Dent Oral Epidemiol.
2018;46:17-23. |
|
|
|
6.
Schlueter N, Luka B. Erosive tooth wear - a review on global prevalence and
on its prevalence in risk groups. Br Dent J. 2018;224:364-70. |
|
|
|
7.
Salas MMS, Nascimento GG, Huysmans MC, Demarco FF. Estimated prevalence of
erosive tooth wear in permanent teeth of children and adolescents: an epidemiological
systematic review and meta-regression analysis. J Dent. 2015;43:42-50. |
|
|
|
8.
Lussi A, Jaeggi T, Zero D. The role of diet in the aetiology of dental
erosion. Caries Res. 2004;38:34-44. |
|
|
|
9.
Rios D, Honório HM, Magalhães AC, Wiegand A, de Andrade Moreira Machado MA,
Buzalaf MAR. Light cola drink is less erosive than the regular one: an in
situ/ex vivo study. J Dent. 2009;37:163-6. |
|
|
|
10.
Rios D, Santos FCZ, Honório HM, Magalhães AC, Wang L, de Andrade Moreira
Machado MA, et al. An in situ/ex vivo comparison of the ability of regular
and light colas to induce enamel wear when erosion is combined with abrasion.
Quintessence Int. 2011;42:e44-e50. |
|
|
|
11.
Santos NM, Jordão MC, Ionta FQ, Mendonça FL, Di Leone CCL, Buzalaf MAR, et
al. Impact of a simplified in situ protocol on enamel loss after erosive
challenge. PLoS One. 2018;13:e0196557-e. |
|
|
|
12.
Honório HM, Rios D, Santos CF, Magalhães AC, Buzalaf MAR, Machado MAAM.
Effects of erosive, cariogenic or combined erosive/cariogenic challenges on
human enamel: an in situ/ex vivo study. Caries Res. 2008;42:454-9. |
|
|
|
13.
Zalizniak I, Palamara JEA, Wong RHK, Cochrane NJ, Burrow MF, Reynolds EC. Ion
release and physical properties of CPP-ACP modified GIC in acid solutions. J
Dent. 2013;41:449-54. |
|
|
|
14.
Alencar CRBd, Mendonça FL, Guerrini LB, Jordão MC, Oliveira GCd, Honório HM,
et al. Effect of different salivary exposure times on the rehardening of
acid-softened enamel. Braz Oral Res. 2016;30:e104-e. |
|
|
|
15.
Mendonça FL, Jordão MC, Ionta FQ, Buzalaf MAR, Honório HM, Wang L, et al. In
situ effect of enamel salivary exposure time and type of intraoral appliance
before an erosive challenge. Clin Oral Investig. 2017;21:2465-71. |
|
|
|
16.
Rangan C, Barceloux DG. Food additives and sensitivities. Dis Mon. 2009;55:292-311. |
|
|
|
17.
Graf E. Antioxidant potential of ferulic acid. Free Radic Biol Med. 1992;13:435-48. |
|
|
|
18.
Hung CR, Hung PC. Protective effects of several amino acid-nutrients on
gastric hemorrhagic erosions in acid-irrigated stomachs of septic rats. Chin
J Physiol. 1999;42:161-9. |
|
|
|
19.
Ashok I, Sheeladevi R. Biochemical responses and mitochondrial mediated
activation of apoptosis on long-term effect of aspartame in rat brain. Redox
Biol. 2014;2:820-31. |
|
|
|
20.
McBain CJ, Mayer ML. N-methyl-D-aspartic acid receptor structure and function.
Physiol Rev. 1994;74:723-60. |
|
|
|
21.
Algarni AA, Mussi MCM, Moffa EB, Lippert F, Zero DT, Siqueira WL, et al. The
impact of stannous, fluoride ions and its combination on enamel pellicle
proteome and dental erosion prevention. PLoS One. 2015;10:e0128196-e. |
|
|
|
22.
Schlueter N, Hardt M, Lussi A, Engelmann F, Klimek J, Ganss C. Tin-containing
fluoride solutions as anti-erosive agents in enamel: an in vitro tin-uptake,
tissue-loss, and scanning electron micrograph study. Eur J Oral Sci. 2009;117:427-34. |
|
|
|
23.
Hunt JN. The composition of gastric juice. J Physiol. 1951;113:419-24. |
|
|
|
24.
Hove LH, Holme B, Young A, Tveit AB. The erosion-inhibiting effect of TiF4,
SnF2, and NaF solutions on pellicle-covered enamel in vitro. Acta Odontol
Scand. 2007;65:259-64. |
|
|
|
25.
Oliveira GCd, Tereza GPG, Boteon AP, Ferrairo BM, Gonçalves PSP, Silva TCd,
et al. Susceptibility of bovine dental enamel with initial erosion lesion to
new erosive challenges. PLoS One. 2017;12:e0182347-e. |
|
|
|
26.
Young A, Tenuta LMA. Initial erosion models. Caries Res. 2011;45:33-42. |
|
|
|
27.
Attin T, Wegehaupt FJ. Methods for assessment of dental erosion. Monogr Oral
Sci. 2014;25:123-42. |
|
|
|
28.Yassen
GH, Platt JA, Hara AT. Bovine teeth as substitute for human teeth in dental
research: a review of literature. J Oral Sci. 2011;53:273-82. |