Carvalho FSR, Feitosa VP, Fonteles CS, Ribeiro TR, Araújo BS, Ayala AP, Costa FWG. Compositional and microhardness findings in tooth affected by X-linked hypophosphatemic rickets. J Clin Exp Dent. 2020;12(7):e688-94.

 

doi:10.4317/jced.56945

https://doi.org/10.4317/jced.56945

_______________________________

 

References

1. Ribeiro TR, Costa FW, Soares EC, Williams JR Jr, Fonteles CS. Enamel and dentin mineralization in familial hypophosphatemic rickets: a micro-CT study. Dentomaxillofac Radiol. 2015;44:20140347.
https://doi.org/10.1259/dmfr.20140347
PMid:25651274 PMCid:PMC4628496

 

2. Ichikawa S, Traxler EA, Estwick SA, Curry LR, Johnson ML, Sorenson, AH et al. Mutational survey of the PHEX gene in patients with X-linked hypophosphatemic rickets. Bone. 2008;43:663-6.
https://doi.org/10.1016/j.bone.2008.06.002
PMid:18625346 PMCid:PMC2579265

 

3. Boukpessi T, Septier D, Bagga S, Garabedian M, Goldberg M, Chaussain-Miller C. Dentin alteration of deciduous teeth in human hypophosphatemic rickets. Calcif Tissue Int. 2006;79:294-300.
https://doi.org/10.1007/s00223-006-0182-4
PMid:17115324

 

4. A gene (PHEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet. 1995;11:130-6.

 

5. Boukpessi T, Hoac B, Coyac BR, Leger T, Garcia C, Wicart P, Whyte MP, et al. Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia. Bone. 2017;95:151-61.
https://doi.org/10.1016/j.bone.2016.11.019
PMid:27884786

 

6. Pereira CM, de Andrade CR, Vargas PA, Coletta RD, de Almeida OP, Lopes MA. Dental alterations associated with X-linked hypophosphatemic rickets. J Endod. 2004;30:241-5.
https://doi.org/10.1097/00004770-200404000-00015
PMid:15085056

 

7. Soares EC, Costa FW, Ribeiro TR, Alves AP, Fonteles CS. Clinical approach in familial hypophosphatemic rickets: report of three generations Spec Care Dentist. 2012 Dec 5. doi: 10.1111/j.1754-4505.2012.00310.x. [Epub ahead of print].
https://doi.org/10.1111/j.1754-4505.2012.00310.x
PMid:23278178

 

8. McWhorter AG, Seale NS. Prevalence of dental abscess in a population of children with vitamin D-resistant rickets. Pediatr Dent. 1991;13:91-6.

 

9. Gajjeraman S, Narayanan K, Hao J, Qin C, George A. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J Biol Chem. 2007;282:1193-1204.
https://doi.org/10.1074/jbc.M604732200
PMid:17052984

 

10. Maginot M, Lin S, Liu Y, Yuan B, Feng JQ, Aswath PB. The in vivo role of DMP-1 and serum phosphate on bone mineral composition. Bone. 2015;81:602-13.
https://doi.org/10.1016/j.bone.2015.08.018
PMid:26303287

 

11. Opsahl Vital S1, Gaucher C, Bardet C, Rowe PS, George A, Linglart A, et al. Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone. 2012;50:989-97.
https://doi.org/10.1016/j.bone.2012.01.010
PMid:22296718 PMCid:PMC3345892

 

12. Seeto E, Seow WK. Scanning electron microscopic analysis of dentin in vitamin D-resistant rickets--assessment of mineralization and correlation with clinical findings. Pediatr Dent. 1991;13:43-8.

 

13. Chaussain-Miller C, Sinding C, Septier D, Wolikow M, Goldberg M, Garabedian M. Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral Dis. 2007;13:482-9.
https://doi.org/10.1111/j.1601-0825.2006.01326.x
PMid:17714351

 

14. Kong K, Kendall C, Stone N, Notingher I. Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev. 2015;89:121-34.
https://doi.org/10.1016/j.addr.2015.03.009
PMid:25809988

 

15. Kann B, Offerhaus HL, Windbergs M, Otto C. Raman microscopy for cellular investigations--From single cell imaging to drug carrier uptake visualization. Adv Drug Deliv Rev. 2015;89:71-90.
https://doi.org/10.1016/j.addr.2015.02.006
PMid:25728764

 

16. Schulze KA, Balooch M, Balooch G, Marshall GW, Marshall SJ. Micro-Raman spectroscopic investigation of dental calcified tissues. J Biomed Mater Res A. 2004;69:286-93.
https://doi.org/10.1002/jbm.a.20130
PMid:15058001

 

17. Ho SP, Balooch M, Marshall SJ, Marshall GW. Local properties of a functionally graded interphase between cementum and dentin. J Biomed Mater Res A. 2004;70:480-9.
https://doi.org/10.1002/jbm.a.30105
PMid:15293322

 

18. Gong B, Oest ME, Mann KA, Damron TA, Morris MD. Raman spectroscopy demonstrates prolonged alteration of bone chemical composition following extremity localized irradiation. Bone. 2013;57:252-8.
https://doi.org/10.1016/j.bone.2013.08.014
PMid:23978492 PMCid:PMC3789379

 

19. Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11:664-87.
https://doi.org/10.1038/nprot.2016.036
PMid:26963630

 

20. Bai J, Qin M, Zhao YM, Huang MW, Ji AP. Chemical removal of necrotic periodontal ligament on delayed replanted teeth by sodium hypochlorite: morphological analysis and microhardness indentation test of cementum. Int Endod J. 2016;49:393-401.
https://doi.org/10.1111/iej.12467
PMid:26010894

 

21. Nikiforuk G, Fraser D. Etiology of Enamel Hypoplasia and Interglobular Dentin: The Roles of Hypocalcemia and Hypophosphatemia. Metabolic Bone Disease and Related Research. 1979;2:17-23.
https://doi.org/10.1016/0221-8747(79)90014-6

 

22. Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, et al. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine. 2016;11:4743-63.
https://doi.org/10.2147/IJN.S107624
PMid:27695330 PMCid:PMC5034904

 

23. Qin C, Baba O, Butler WT. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med. 2004;15:126-36.
https://doi.org/10.1177/154411130401500302
PMid:15187031

 

24. He G, Gajjeraman S, Schultz D, Cookson D, Qin C, Butler WT, et al. Spatially and temporally controlled biomineralization is facilitated by interaction between self-assembled dentin matrix protein 1 and calcium phosphate nuclei in solution. Biochemistry. 2005;44:16140-8.
https://doi.org/10.1021/bi051045l
PMid:16331974 PMCid:PMC2656772

 

25. Ho SP, Senkyrikova P, Marshall GW, Yun W, Wang Y, Karan K, et al. Structure, chemical composition and mechanical properties of coronal cementum in human deciduous molars. Dent Mater. 2009;25:1195-1204.
https://doi.org/10.1016/j.dental.2009.04.005
PMid:19464049 PMCid:PMC2782750

 

26. Shellis RP. Structural organization of calcospherites in normal and rachitic human dentine. Arch Oral Biol. 1983;28:85-95.
https://doi.org/10.1016/0003-9969(83)90030-4

 

27. Jayawardena C, Nandasena T, Abeywardena A, Nanayakkara D. Regional distribution of interglobular dentine in human teeth. Arch Oral Biol. 2009;54:1016-21.
https://doi.org/10.1016/j.archoralbio.2009.09.001
PMid:19782342

 

28. Salmon B, Bardet C, Coyac BR, Baroukh B, Naji J, Rowe PS, et al. Abnormal osteopontin and matrix extracellular phosphoglycoprotein localization, and odontoblast differentiation, in X-linked hypophosphatemic teeth. Connect Tissue Res. 2014;55:79-82.
https://doi.org/10.3109/03008207.2014.923864
PMid:25158186