Lima JMC,
Tribst JPM, Anami LC, de Melo RM, Moura DMD, Souza ROA, Bottino MA. Long-term
fracture load of all-ceramic crowns: Effects of veneering ceramic thickness,
application techniques, and cooling protocol. J Clin Exp Dent.
2020;12(11):e1078-85.
doi:10.4317/jced.57352
https://doi.org/10.4317/jced.57352
_____
References
1.
Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic
dental crowns and fixed partial dentures. Acta Biomater. 2009;5:1668-1677 |
||||
|
||||
2.
Soares LM, Soares C, Miranda ME, Basting RT. Influence of Core-Veneer
Thickness Ratio on the Fracture Load and Failure Mode of Zirconia Crowns. J
Prosthodont. 2019;28:209-215. |
||||
|
||||
3.
Dhital S, Rodrigues C, Zhang Y, Kim J. Viscoelastic finite element evaluation
of transient and residual stresses in dental crowns: Design parametric study.
J Mech Behav Biomed Mater. 2020;103:103545. |
||||
|
||||
4.
Swain MV, Mercurio V, Tibballs JE, Tholey M. Thermal induced deflection of a
porcelain-zirconia bilayer: Influence of cooling rate. Dent Mater. 2019;35:574-584. |
||||
|
||||
5.
Örtorp A, Lindh Kihl M, Carlsson GE. A 3-year retrospective and clinical
follow-up study of zirconia single crowns performed in a private practice. J
Dent. 2009;37:731-736. |
||||
|
||||
6.
Sailer I, Gottnerb J, Kanelb S, Hammerle CH. Randomized controlled clinical
trial of zirconia-ceramic and metal-ceramic posterior fixed dental
prostheses: a 3-year follow-up. Int J Prosthodont. 2009;22:553-560. PMid:19918588 |
||||
|
||||
7.
Scurria MS, Bader JD, Shugars DA. Meta-analysis of fixed partial denture
survival: Prostheses and abutments. J Prosthet Dent 1998;79:459-464. PMid:
9576323 |
||||
|
||||
8.
Tribst JPM, Dal Piva AMO, Penteado MM, Borges ALS, Bottino MA. Influence of
ceramic material, thickness of restoration and cement layer on stress
distribution of occlusal veneers. Braz Oral Res. 2018;32:e118. |
||||
|
||||
9.
Lorenzoni FC, Martins LM, Silva NR, Coelho PG, Guess PC, Bonfante EA,
Thompson VP, Bonfante G. Fatigue life and failure modes of crowns systems
with a modified framework design. J Dent. 2010;38:626-634. |
||||
|
||||
10.
Tholey MJ, Swain MV, Thiel N. Thermal gradients and residual stresses in
veneered Y-TZP frameworks. Dent Mater. 2011;27:1102-1110. |
||||
|
||||
11.
Mainjot AK, Schajer GS, Vanheusden AJ, Sadoun MJ. Influence of zirconia
framework thickness on residual stress profile in veneering ceramic:
measurement by hole-drilling. Dent Mater. 2012;28:378-384. |
||||
|
||||
12.
Mainjot AK, Schajer GS, Vanheusden AJ, Sadoun MJ. Influence of veneer
thickness on residual stress profile in veneering ceramic: measurement by
hole-drilling. Dent Mater. 2012;28:160-167. |
||||
|
||||
13.
Tanaka CB, Ballester RY, De Souza GM, Zhang Y, Meira JBC. Influence of
residual thermal stresses on the edge chipping resistance of PFM and veneered
zirconia structures: Experimental and FEA study. Dent Mater.
2019;35(2):344-355. |
||||
|
||||
14.
Quinn JB, Quinn G, Sundar V. Fracture Toughness of Veneering Ceramics for
Fused to Metal (PFM) and Zirconia Dental Restorative Materials. J Res Natl
Inst Stand Technol. 2010;115:343-352. |
||||
|
||||
15.
Zhang Y, Allahkarami M, Hanan JC. Measuring residual stress in ceramic
zirconia-porcelain dental crowns by nanoindentation. J Mech Behav Biomed
Mater. 2012;6:120-127. |
||||
|
||||
16.
Bonfante EA, Coelho PG, Guess PC, Thompson VP, Silva NR. Fatigue and damage
accumulation of veneer porcelain pressed on Y-TZP. J Dent. 2010;38:318-324. |
||||
|
||||
17.
Holand W, Schweiger M, Frank M, Rheinberger V. A comparison of the
microstructure and properties of the IPS Empress 2 and the IPS Empress
glass-ceramics. J Biomed Mater Res (Appl Biomater). 2000;53:297-303. PMid:10898870 |
||||
|
||||
18.
Tsalouchou E, Cattell MJ, Knowles JC, Pittayachawan P, McDonald A. Fatigue
and fracture properties of yttria partially stabilized zirconia crown
systems. Dent Mater. 2008;24:308-318. |
||||
|
||||
19.
Dal Piva AO, Tribst JP, Borges AL, de Melo RM, Bottino MA. Influence of
substrate design for in vitro mechanical testing. J Clin Exp Dent. 2019;11:e119-e125. |
||||
|
||||
20.
Tan JP, Sederstrom D, Polansky JR, McLaren EA, White SN. The use of slow
heating and slow cooling regimens to strengthen porcelain fused to zirconia.
J Prosthet Dent. 2012;107:163-169. PMid:22385692 |
||||
|
||||
21.
Lima JM, Souza AC, Anami LC, Bottino MA, Melo RM, Souza RO. Effects of
thickness, processing technique, and cooling rate protocol on the flexural
strength of a bilayer ceramic system. Dent Mater. 2013;29:1063-1072. |
||||
|
||||
22.
Burke FJ. Fracture resistance of teeth restored with dentin-bonded crowns:
the effect of increased tooth preparation. Quintessence Int. 1996;27:115-121. PMid:9063222 |
||||
|
||||
23.
Zahran M, El-Mowafy O, Tam L, Watson PA, Finer Y. Fracture strength and
fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM
technology. J Prosthodont. 2008;17:370-377. |
||||
|
||||
24.
Aboushelib MN, Feilzer AJ, Kleverlaan CJ. Bridging the gap between clinical
failure and laboratory fracture strength tests using a fractographic
approach. Dent Mater. 2009;25:383-391 |
||||
|
||||
25.
Riedel C, Wendler M, Belli R, Petschelt A, Lohbauer U. In vitro lifetime of
zirconium dioxide-based crowns veneered using Rapid Layer Technology. Eur J
Oral Sci. 2019;127:179-186. |
||||
|
||||
26.
Rosentritt M, Behr M, Gebhard R, Handel G. Influence of stress simulation
parameters on the fracture strength of all-ceramic fixed-partial dentures.
Dent Mater. 2006;22:176-182 |
||||
|
||||
27.
Att W, Grigoriadou M, Strub JR. ZrO2 three-unit fixed partial dentures:
comparison of failure load before and after exposure to a mastication
simulator. J Oral Rehabil. 2007;34:282-290. |
||||
|
||||
28.
Hattori Y, Satoh C, Kunieda T, Endoh R, Hisamatsu H, Watanabe M. Bite forces
and their resultants during forceful intercuspal clenching in humans. J
Biomech. 2009;42:1533-1538. |
||||
|
||||
29.
Young WC, Budynas RG, Sadegh AM. Roark' Formulas for stress and strain.
Eighth edition. New York: McGraw-Hill; 2011:174. |
||||
|
||||
30.
Lan TH, Pan CY, Liu PH, Chou MMC. Fracture Resistance of Monolithic Zirconia
Crowns in Implant Prostheses in Patients with Bruxism. Materials (Basel).
2019;12:1623. |
||||
|
||||
31.
Ferrario VF, Sforza C, Zanotti G, Tartaglia GM. Maximal bite forces in
healthy young adults as predicted by surface electromyography. J Dent.
2004;32:451-457. |
||||
|
||||
32.
Koenig V, Vanheusden AJ, Le Goff SO, Mainjot AK. Clinical risk factors
related to failures with zirconia-based restorations: An up to 9-year
retrospective study. J Dent. 2013;41:1164-74. |
||||
|
||||
33.
Rosentritt M, Behr M, Thaller C, Rudolph H, Feilzer A. Fracture performance
of computer-aided manufactured zirconia and alloy crowns. Quintessence Int.
2009;40:655-662. PMid:19639090 |
||||
|
||||
34.
Larsson C, El Madhoun S, Wennerberg A, Vult von Steyern P. Fracture strength
of yttria-stabilized tetragonal zirconia polycrystals crowns with different
design: an in vitro study. Clin Oral Implants Res. 2012;23:820-826. |
||||
|
||||
35.
Guess PC, Bonfante EA, Silva NR, Coelho PG, Thompson VP. Effect of core
design and veneering technique on damage and reliability of Y-TZP-supported
crowns. Dent Mater. 2013;29:307-316. |
||||
|
||||
36.
Sundh A, Sjogren G. A comparison of fracture strength of
yttrium-oxide-partially-stabilized zirconia ceramic crowns with varying core
thickness, shapes and veneer ceramics. J Oral Rehabil. 2004;31:682-688. |
||||
|
||||
37.
Tezulas E, Yildiz C, Kucuk C, Kahramanoglu E. Current status of
zirconia-based all-ceramic restorations fabricated by the digital veneering
technique: a comprehensive review. Int J Comput Dent. 2019;22:217-230. PMid:31463486 |
||||
|
||||
38.
Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP.
Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns:
comparison of failure modes and reliability after fatigue. Int J Prosthodont.
2010;23:434-442. PMid:20859559 |
||||