Lima JMC, Tribst JPM, Anami LC, de Melo RM, Moura DMD, Souza ROA, Bottino MA. Long-term fracture load of all-ceramic crowns: Effects of veneering ceramic thickness, application techniques, and cooling protocol. J Clin Exp Dent. 2020;12(11):e1078-85.

 

doi:10.4317/jced.57352

https://doi.org/10.4317/jced.57352

_____

 

References

1. Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater. 2009;5:1668-1677
https://doi.org/10.1016/j.actbio.2008.12.016
PMid:19201268

 

2. Soares LM, Soares C, Miranda ME, Basting RT. Influence of Core-Veneer Thickness Ratio on the Fracture Load and Failure Mode of Zirconia Crowns. J Prosthodont. 2019;28:209-215.
https://doi.org/10.1111/jopr.12601
PMid:28234412

 

3. Dhital S, Rodrigues C, Zhang Y, Kim J. Viscoelastic finite element evaluation of transient and residual stresses in dental crowns: Design parametric study. J Mech Behav Biomed Mater. 2020;103:103545.
https://doi.org/10.1016/j.jmbbm.2019.103545
PMid:31760273

 

4. Swain MV, Mercurio V, Tibballs JE, Tholey M. Thermal induced deflection of a porcelain-zirconia bilayer: Influence of cooling rate. Dent Mater. 2019;35:574-584.
https://doi.org/10.1016/j.dental.2019.01.019
PMid:30738621

 

5. Örtorp A, Lindh Kihl M, Carlsson GE. A 3-year retrospective and clinical follow-up study of zirconia single crowns performed in a private practice. J Dent. 2009;37:731-736.
https://doi.org/10.1016/j.jdent.2009.06.002
PMid:19564070

 

6. Sailer I, Gottnerb J, Kanelb S, Hammerle CH. Randomized controlled clinical trial of zirconia-ceramic and metal-ceramic posterior fixed dental prostheses: a 3-year follow-up. Int J Prosthodont. 2009;22:553-560.

PMid:19918588

 

7. Scurria MS, Bader JD, Shugars DA. Meta-analysis of fixed partial denture survival: Prostheses and abutments. J Prosthet Dent 1998;79:459-464.
https://doi.org/10.1016/S0022-3913(98)70162-3

PMid: 9576323

 

8. Tribst JPM, Dal Piva AMO, Penteado MM, Borges ALS, Bottino MA. Influence of ceramic material, thickness of restoration and cement layer on stress distribution of occlusal veneers. Braz Oral Res. 2018;32:e118.
https://doi.org/10.1590/1807-3107bor-2018.vol32.0118
PMid:30517427

 

9. Lorenzoni FC, Martins LM, Silva NR, Coelho PG, Guess PC, Bonfante EA, Thompson VP, Bonfante G. Fatigue life and failure modes of crowns systems with a modified framework design. J Dent. 2010;38:626-634.
https://doi.org/10.1016/j.jdent.2010.04.011
PMid:20450952

 

10. Tholey MJ, Swain MV, Thiel N. Thermal gradients and residual stresses in veneered Y-TZP frameworks. Dent Mater. 2011;27:1102-1110.
https://doi.org/10.1016/j.dental.2011.08.001
PMid:21907400

 

11. Mainjot AK, Schajer GS, Vanheusden AJ, Sadoun MJ. Influence of zirconia framework thickness on residual stress profile in veneering ceramic: measurement by hole-drilling. Dent Mater. 2012;28:378-384.
https://doi.org/10.1016/j.dental.2011.11.009
PMid:22153718

 

12. Mainjot AK, Schajer GS, Vanheusden AJ, Sadoun MJ. Influence of veneer thickness on residual stress profile in veneering ceramic: measurement by hole-drilling. Dent Mater. 2012;28:160-167.
https://doi.org/10.1016/j.dental.2011.11.008
PMid:22153325

 

13. Tanaka CB, Ballester RY, De Souza GM, Zhang Y, Meira JBC. Influence of residual thermal stresses on the edge chipping resistance of PFM and veneered zirconia structures: Experimental and FEA study. Dent Mater. 2019;35(2):344-355.
https://doi.org/10.1016/j.dental.2018.11.034
PMid:30579589 PMCid:PMC6342632

 

14. Quinn JB, Quinn G, Sundar V. Fracture Toughness of Veneering Ceramics for Fused to Metal (PFM) and Zirconia Dental Restorative Materials. J Res Natl Inst Stand Technol. 2010;115:343-352.
https://doi.org/10.6028/jres.115.024
PMid:21833158 PMCid:PMC3152300

 

15. Zhang Y, Allahkarami M, Hanan JC. Measuring residual stress in ceramic zirconia-porcelain dental crowns by nanoindentation. J Mech Behav Biomed Mater. 2012;6:120-127.
https://doi.org/10.1016/j.jmbbm.2011.11.006
PMid:22301181

 

16. Bonfante EA, Coelho PG, Guess PC, Thompson VP, Silva NR. Fatigue and damage accumulation of veneer porcelain pressed on Y-TZP. J Dent. 2010;38:318-324.
https://doi.org/10.1016/j.jdent.2009.12.004
PMid:20026232

 

17. Holand W, Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res (Appl Biomater). 2000;53:297-303.
https://doi.org/10.1002/1097-4636(2000)53:4<297::AID-JBM3>3.0.CO;2-G

PMid:10898870

 

18. Tsalouchou E, Cattell MJ, Knowles JC, Pittayachawan P, McDonald A. Fatigue and fracture properties of yttria partially stabilized zirconia crown systems. Dent Mater. 2008;24:308-318.
https://doi.org/10.1016/j.dental.2007.05.011
PMid:17681371

 

19. Dal Piva AO, Tribst JP, Borges AL, de Melo RM, Bottino MA. Influence of substrate design for in vitro mechanical testing. J Clin Exp Dent. 2019;11:e119-e125.
https://doi.org/10.4317/jced.55353
PMid:30805115 PMCid:PMC6383903

 

20. Tan JP, Sederstrom D, Polansky JR, McLaren EA, White SN. The use of slow heating and slow cooling regimens to strengthen porcelain fused to zirconia. J Prosthet Dent. 2012;107:163-169.
https://doi.org/10.1016/S0022-3913(12)60050-X

PMid:22385692

 

21. Lima JM, Souza AC, Anami LC, Bottino MA, Melo RM, Souza RO. Effects of thickness, processing technique, and cooling rate protocol on the flexural strength of a bilayer ceramic system. Dent Mater. 2013;29:1063-1072.
https://doi.org/10.1016/j.dental.2013.07.019
PMid:23957933

 

22. Burke FJ. Fracture resistance of teeth restored with dentin-bonded crowns: the effect of increased tooth preparation. Quintessence Int. 1996;27:115-121.

PMid:9063222

 

23. Zahran M, El-Mowafy O, Tam L, Watson PA, Finer Y. Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology. J Prosthodont. 2008;17:370-377.
https://doi.org/10.1111/j.1532-849X.2008.00305.x
PMid:18355164

 

24. Aboushelib MN, Feilzer AJ, Kleverlaan CJ. Bridging the gap between clinical failure and laboratory fracture strength tests using a fractographic approach. Dent Mater. 2009;25:383-391
https://doi.org/10.1016/j.dental.2008.09.001
PMid:18926566

 

25. Riedel C, Wendler M, Belli R, Petschelt A, Lohbauer U. In vitro lifetime of zirconium dioxide-based crowns veneered using Rapid Layer Technology. Eur J Oral Sci. 2019;127:179-186.
https://doi.org/10.1111/eos.12604
PMid:30648767

 

26. Rosentritt M, Behr M, Gebhard R, Handel G. Influence of stress simulation parameters on the fracture strength of all-ceramic fixed-partial dentures. Dent Mater. 2006;22:176-182
https://doi.org/10.1016/j.dental.2005.04.024
PMid:16039706

 

27. Att W, Grigoriadou M, Strub JR. ZrO2 three-unit fixed partial dentures: comparison of failure load before and after exposure to a mastication simulator. J Oral Rehabil. 2007;34:282-290.
https://doi.org/10.1111/j.1365-2842.2006.01705.x
PMid:17371566

 

28. Hattori Y, Satoh C, Kunieda T, Endoh R, Hisamatsu H, Watanabe M. Bite forces and their resultants during forceful intercuspal clenching in humans. J Biomech. 2009;42:1533-1538.
https://doi.org/10.1016/j.jbiomech.2009.03.040
PMid:19446816

 

29. Young WC, Budynas RG, Sadegh AM. Roark' Formulas for stress and strain. Eighth edition. New York: McGraw-Hill; 2011:174.

 

30. Lan TH, Pan CY, Liu PH, Chou MMC. Fracture Resistance of Monolithic Zirconia Crowns in Implant Prostheses in Patients with Bruxism. Materials (Basel). 2019;12:1623.
https://doi.org/10.3390/ma12101623
PMid:31108872 PMCid:PMC6567035

 

31. Ferrario VF, Sforza C, Zanotti G, Tartaglia GM. Maximal bite forces in healthy young adults as predicted by surface electromyography. J Dent. 2004;32:451-457.
https://doi.org/10.1016/j.jdent.2004.02.009
PMid:15240063

 

32. Koenig V, Vanheusden AJ, Le Goff SO, Mainjot AK. Clinical risk factors related to failures with zirconia-based restorations: An up to 9-year retrospective study. J Dent. 2013;41:1164-74.
https://doi.org/10.1016/j.jdent.2013.10.009
PMid:24135294

 

33. Rosentritt M, Behr M, Thaller C, Rudolph H, Feilzer A. Fracture performance of computer-aided manufactured zirconia and alloy crowns. Quintessence Int. 2009;40:655-662.

PMid:19639090

 

34. Larsson C, El Madhoun S, Wennerberg A, Vult von Steyern P. Fracture strength of yttria-stabilized tetragonal zirconia polycrystals crowns with different design: an in vitro study. Clin Oral Implants Res. 2012;23:820-826.
https://doi.org/10.1111/j.1600-0501.2011.02224.x
PMid:21635559

 

35. Guess PC, Bonfante EA, Silva NR, Coelho PG, Thompson VP. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater. 2013;29:307-316.
https://doi.org/10.1016/j.dental.2012.11.012
PMid:23228337

 

36. Sundh A, Sjogren G. A comparison of fracture strength of yttrium-oxide-partially-stabilized zirconia ceramic crowns with varying core thickness, shapes and veneer ceramics. J Oral Rehabil. 2004;31:682-688.
https://doi.org/10.1111/j.1365-2842.2004.01284.x
PMid:15210030

 

37. Tezulas E, Yildiz C, Kucuk C, Kahramanoglu E. Current status of zirconia-based all-ceramic restorations fabricated by the digital veneering technique: a comprehensive review. Int J Comput Dent. 2019;22:217-230.

PMid:31463486

 

38. Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont. 2010;23:434-442.

PMid:20859559