Guedes FR, Bonvicini JFS, de Souza GL, da Silva WHT, Moura CCG, Paranhos LR, Turrioni AP. Cytotoxicity and dentin composition alterations promoted by different chemomechanical caries removal agents: A preliminary in vitro study. J Clin Exp Dent. 2021;13(8):e826-34.

 

doi:10.4317/jced.58208

https://doi.org/10.4317/jced.58208

___________

 

References

1. Richards D. Oral diseases affect some 3.9 billion people. Evid Based Dent. 2013;14:35-40.
https://doi.org/10.1038/sj.ebd.6400925
PMid:23792391

 

2. Fusayama T. Two layers of carious dentin; diagnosis and treatment. Oper Dent. 1979;4:63-70.

PMid:296808

 

3. Bjørndal L, Fransson H, Bruun G, Markvart M, Kjældgaard M, Näsman P, et al. Randomized clinical trials on deep carious lesions: 5-year follow-up. J Dent Res. 2017;96:747-53.
https://doi.org/10.1177/0022034517702620
PMid:28410008

 

4. Ngo HC, Mount G, McIntyre J, Tuisuva J, Von Doussa RJ. Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: an in vivo study. J Dent. 2006;34:608-13.
https://doi.org/10.1016/j.jdent.2005.12.012
PMid:16540227

 

5. Maltz M, de Oliveira EF, Fontanella V, Bianchi R. A clinical, microbiologic, and radiographic study of deep caries lesions after incomplete caries removal. Quintessence Int. 2002;33:151-9.

PMid:11890029

 

6. Bittencourt ST, Pereira JR, Rosa AW, Oliveira KS, Ghizoni JS, Oliveira MT. Mineral content removal after Papacarie application in primary teeth: a quantitative analysis. J Clin Pediatr Dent. 2010;34:229-31.
https://doi.org/10.17796/jcpd.34.3.k15t8q1805538524
PMid:20578660

 

7. Al-Halabi M, Salami A, Alnuaimi E, Kowash M, Hussein I. Assessment of paediatric dental guidelines and caries management alternatives in the post COVID-19 period. A critical review and clinical recommendations. Eur Arch Paediatr Dent. 2020;21:543-56.
https://doi.org/10.1007/s40368-020-00547-5
PMid:32557183 PMCid:PMC7298449

 

8. Decup F, Lasfargues JJ. Minimal intervention dentistry II: part 4. Minimal intervention techniques of preparation and adhesive restorations. The contribution of the sono-abrasive techniques. Br Dent J. 2014;216:393-400.
https://doi.org/10.1038/sj.bdj.2014.246
PMid:24722092

 

9. Jew J, Chan KH, Darling CL, Fried D. Selective removal of natural caries lesions from dentin and tooth occlusal surfaces using a diode-pumped Er:YAG laser. Proc SPIE Int Soc Opt Eng. 2017;10044:100440I.
https://doi.org/10.1117/12.2256728
PMid:28450757 PMCid:PMC5404413

 

10. Safwat O, Elkateb M, Dowidar K, Salam HA, El Meligy O. Microbiological evaluation of ozone on dentinal lesions in young permanent molars using the stepwise excavation. J Clin Pediatr Dent. 2018;42:11-20.
https://doi.org/10.17796/1053-4628-42.1.3
PMid:28937899

 

11. Deng Y, Feng G, Hu B, Kuang Y, Song J. Effects of Papacarie on children with dental caries in primary teeth: a systematic review and meta-analysis. Int J Paediatr Dent. 2018;28:361-72.
https://doi.org/10.1111/ipd.12364
PMid:29682851

 

12. Abdul Khalek AMG, Elkateb MA, Abdel Aziz WE, El Tantawi M. Effect of Papacarie and alternative restorative treatment on pain reaction during caries removal among children: a randomized controlled clinical trial. J Clin Pediatr Dent. 2017;41:219-24.
https://doi.org/10.17796/1053-4628-41.3.219
PMid:28422591

 

13. Habib CM, Kronman J, Goldman MA. A chemical evaluation of collagen and hydroxyproline alter treatment with GK-101(N-chloroglycine). PharmacolTher Dent. 1975;2:209-15.

PMid:1073184

 

14. Cecchin D, Farina AP, Orlando F, Brusco EH, Carlini B. Effect of Carisolv and Papacarie on the resin-dentin bond strength in sound and caries-affected primary molars. Braz J Oral Sci. 2010;9(:25-9.

 

15. Motta LJ, Martins MD, Porta KP, Bussadori SK. Aesthetic restoration of deciduous anterior teeth after removal of carious tissue with Papacárie. Indian J Dent Res. 2009;20:117-20.
https://doi.org/10.4103/0970-9290.49060
PMid:19336873

 

16. Bussadori SK, Guedes CC, Bachiega JC, Santis TO, Motta LJ. Clinical and radiographic study of chemical-mechanical removal of caries using Papacárie: 24-month follow up. J Clin Pediatr Dent. 2011;35:251-4.
https://doi.org/10.17796/jcpd.35.3.75803m02524625h5
PMid:21678665

 

17. Santos TML, Bresciani E, Matos FS, Camargo SEA, Hidalgo APT, Rivera LML, et al. Comparison between conventional and chemomechanical approaches for the removal of carious dentin: an in vitro study. Sci Rep. 2020;10:8127.
https://doi.org/10.1038/s41598-020-65159-x
PMid:32415190 PMCid:PMC7229020

 

18. Krithikadatta J, Gopikrishna V, Datta, M. CRIS guidelines (checklist for reporting in-vitro studies): a concept note on the need for standardized guidelines for improving quality and transparency in reporting in-vitro studies in experimental dental research. J Conserv Dent. 2014;17:301-4.
https://doi.org/10.4103/0972-0707.136338
PMid:25125839 PMCid:PMC4127685

 

19. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. ProcNatlAcadSci USA. 2000;97:13625-30.
https://doi.org/10.1073/pnas.240309797
PMid:11087820 PMCid:PMC17626

 

20. Miyagi SPH, Mello I, Bussadori SK, Marques MM. Resposta de fibroblastos pulpares humanos em cultura ao gel de papacárie® (Response of cultured pulpal fibroblasts to papacárie® gel). Revista de Odontologia da Universidade Cidade de São Paulo. 2006;18:245-9.

 

21. Bohari MR, Chunawalla YK, Ahmed BM. Clinical evaluation of caries removal in primary teeth using conventional, chemomechanical and laser technique: an in vivo study. J Contemp Dent Pract. 2012;13:40-7.
https://doi.org/10.5005/jp-journals-10024-1093
PMid:22430692

 

22. Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Kanda Y, Nakajima H, Sakagami H. Cytotoxicity and pro-inflammatory action of chemomechanical caries-removal agents against oral cells. In Vivo. 2014;28:549-56.

PMid:24982221

 

23. Costa CA, Ribeiro AP, Giro EM, Randall RC, Hebling J. Pulp response after application of two resin modified glass ionomer cements (RMGICs) in deep cavities of prepared human teeth. Dent Mater. 2011;27:e158-70.
https://doi.org/10.1016/j.dental.2011.04.002
PMid:21549419

 

24. Garcia LFR, Pontes EC, Basso FG, Hebling J, de Souza Costa CA, Soares DG. Transdentinal cytotoxicity of resin-based luting cements to pulp cells. Clin Oral Investig. 2016;20:1559-66.
https://doi.org/10.1007/s00784-015-1630-1
PMid:26481234

 

25. Cavalcanti BN, Rode SM, Marques MM. Cytotoxicity of substances leached or dissolved from pulp capping materials. IntEndod J. 2005;38:505-9.
https://doi.org/10.1111/j.1365-2591.2005.00967.x
PMid:16011767

 

26. Llena C, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Martínez CM, Moraleda JM, et al. Comparison of diffusion, cytotoxicity and tissue inflammatory reactions of four commercial bleaching products against human dental pulp stem cells. Sci Rep. 2019;9:7743.
https://doi.org/10.1038/s41598-019-44223-1
PMid:31123303 PMCid:PMC6533274

 

27. de Los Angeles Moyaho-Bernal M, Contreras-Bulnes R, Rodríguez-Vilchis LE, Rubio-Rosas E, Scougall-Vilchis RJ, Centeno-Pedraza C. Morphological and chemical changes in human deciduous dentin after phosphoric acid, self-etching adhesive and Er: YAG laser conditioning. Microsc Res Tech. 2018;81:494-501.
https://doi.org/10.1002/jemt.23003
PMid:29411473

 

28. Zamudio-Ortega CM, Contreras-Bulnes R, Scougall-Vilchis RJ, Morales-Luckie RA, Olea-Mejía OF, Rodríguez-Vilchis LE, et al. Morphological and chemical changes of deciduous enamel produced by Er:YAG laser, fluoride, and combined treatment. Photomed Laser Surg. 2014;32:252-9.
https://doi.org/10.1089/pho.2013.3622
PMid:24717124

 

29. Arnold WH, Gaengler P. Quantitative analysis of the calcium and phosphorus content of developing and permanent human teeth. Ann Anat. 2007;189:183-90.
https://doi.org/10.1016/j.aanat.2006.09.008
PMid:17419551

 

30. Hall TA, Gupta BL. The application of EDXS to the biological sciences. J Microsc. 1984;136:193-208.
https://doi.org/10.1111/j.1365-2818.1984.tb00528.x
PMid:6392560