Aksoy M, Şen S, Kaptan A, Büyükkok C, Tulga-Öz F. Does the heat generated by fluorescence-aided caries excavation system effect the pulp temperature of primary teeth irreversibly? An in-vitro evaluation of the temperature changes in the pulp chamber. J Clin Exp Dent. 2021;13(11):e1096-1103.

 

doi:10.4317/jced.58785

https://doi.org/10.4317/jced.58785

___________

 

References

1. Fuks AB, Kupietzky A, Guelmann M. Pulp therapy for the primary dentition. In: Nowak AJ, Christensen JR, Mabry TR, Townsend JA, Wells MH. editors. Pediatric Dentistry - Infancy through Adolescence. 6th ed. St. Louis: Elsevier-Saunders Co.; 2019.p. 329-51.

 

2. Bjørndal L, Fransson H, Bruun G, Markvart M, Kjældgaard M, Näsman P, et al. Randomized Clinical Trials on Deep Carious Lesions : 5-Year Follow-up. J Dent Res. 2017;96:747-775
https://doi.org/10.1177/0022034517702620
PMid:28410008

 

3. Kidd E. Should deciduous teeth be restored? Reflections of a cariologist. Dent Update. 2012;39:159-62
https://doi.org/10.12968/denu.2012.39.3.159
PMid:22675887

 

4. Cortés A, Martignon S, Douglas G. The Visual Presentation of Dental Caries. In: Ferreira Zandona F, Longbottom A. editors. Detection and Assessment of Dental Caries. Switzerland: Springer International Publishing; 2019. p. 17-26.
https://doi.org/10.1007/978-3-030-16967-1_3
PMid:31231577 PMCid:PMC6559989

 

5. Banerjee A, Watson TF, Kidd EAM. Dentin caries excavation: A review of current clinical techniques. Br Dent J. 2000;188:476-482.
https://doi.org/10.1038/sj.bdj.4800515
PMid:10859846

 

6. Lennon ÁM, Buchalla W, Switalski L, Stookey GK. Residual caries detection using visible fluorescence. Caries Res. 2002;36:315-319.
https://doi.org/10.1159/000065956
PMid:12399691

 

7. Lennon ÁM, Buchalla W. Fluorescence-Aided Caries Excavation: FACE. In: Detection and Assessment of Dental Caries. Springer International Publishing; 2019. p. 99-106.
https://doi.org/10.1007/978-3-030-16967-1_10

 

8. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol. 1965;19:515-530.
https://doi.org/10.1016/0030-4220(65)90015-0

PMid:14263662

 

9. Hannig M, Bott B. In-vitro pulp temperature rise during composite resin polymerization with various light-curing sources. Dent Mater. 1999;15:275-281.
https://doi.org/10.1016/S0109-5641(99)00047-0

PMid:10551096

 

10. Langeland K. Effect of various procedures on the human dental pulp. Pulp reactions to cavity preparation and gutta purcha. Oral Surg Oral Med Oral Pathol. 1961;14:210-233.
https://doi.org/10.1016/0030-4220(61)90367-X

 

11. Buyukkok C, Kaptan A. Temperature increases in primary teeth pulp chamber during polymerization of glass ionomer-based restorative materials. Eur Oral Res. 2021;55:28-33.
https://doi.org/10.26650/eor.20210024
PMid:33937759 PMCid:PMC8055261

 

12. Altan H, Göztas Z, Arslanoglu Z. Bulk-Fill restorative materials in primary tooth: An intrapulpal temperature changes study. Contemp Clin Dent. 2018;9:52-57.
https://doi.org/10.4103/ccd.ccd_23_18
PMid:29962764 PMCid:PMC6006891

 

13. Asmussen E, Peutzfeldt A. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units. Eur J Oral Sci. 2005;113:96-98.
https://doi.org/10.1111/j.1600-0722.2004.00181.x
PMid:15693836

 

14. Lipski M, Woźniak K, Szyszka-Sommerfeld L, Borawski M, Droździk A, Nowicka A. In Vitro Infrared Thermographic Assessment of Temperature Change in the Pulp Chamber during Provisionalization: Effect of Remaining Dentin Thickness. J Healthc Eng. 2020;2020:8838329.
https://doi.org/10.1155/2020/8838329
PMid:33224457 PMCid:PMC7671814

 

15. Lai G, Zhu L, Xu X, et al. An in vitro comparison of fluorescence-aided caries excavation and conventional excavation by microhardness testing. Clin Oral Investig. 2014;18:599-605.
https://doi.org/10.1007/s00784-013-0999-y
PMid:23703030

 

16. Lennon ÁM. Fluorescence-Aided Caries Excavation (FACE) Compared to conventional method. Oper Dent. 2003;28:341-345.

PMid:12877417

 

17. Koç-vural U, Ergin E, Gurgan S. Microhardness and shear bond-strength of carious dentin after fluorescence-aided or conventionally excavation: ( An in-vitro comparison ). J Clin Exp Dent. 2018;10:e668-672.
https://doi.org/10.4317/jced.53592
PMid:30057709 PMCid:PMC6057073

 

18. Peskersoy C, Turkun M, Onal B. Comparative clinical evaluation of the efficacy of a new method for caries diagnosis and excavation. J Conserv Dent. 2015;18:364-8.
https://doi.org/10.4103/0972-0707.164032
PMid:26430298 PMCid:PMC4578179

 

19. Klein C, Babai A, Ohle C Von, Herz M, Wolff D, Meller C. Minimally invasive removal of tooth-colored restorations: evaluation of a novel handpiece using the fluorescence-aided identification technique (FIT).Clin Oral Investig. 2020;24:2735-2743
https://doi.org/10.1007/s00784-019-03135-0
PMid:31712984

 

20. Ramoglu SI, Karamehmetoglu H, Sari T, et al. Temperature rise caused in the pulp chamber under simulated intrapulpal microcirculation with different light-curing modes. Angle Orthod. 2015;85:381-5.
https://doi.org/10.2319/030814-164.1
PMid:25317750

 

21. Savas S, Botsali MS, Küçükyilmaz E, Usumez S. Evaluation of temperature changes in the pulp chamber during polymerization of light-cured pulp-capping materials by using a VALO LED light curing unit at different curing distances. Dent Mater J. 2014;33:764-69.
https://doi.org/10.4012/dmj.2013-274
PMid:25311340

 

22. Kodonas K, Gogos C, Tziafas D. Effect of simulated pulpal microcirculation on intrapulpal temperature changes following application of heat on tooth surfaces. Int Endod J. 2009;42:247-252.
https://doi.org/10.1111/j.1365-2591.2008.01508.x
PMid:19228215

 

23. Dhar V, Marghalani AA, Crystal YO, Kumar A, Ritwik P, Tulunoglu O, et al. Use of vital pulp therapies in primary teeth with deep caries lesions. Pediatr Dent. 2017;39:e146-159.

PMid:29070150

 

24. Lennon ÁM, Buchalla TAW. Quantity of Remaining Bacteria and Cavity Size After Excavation with FACE , Caries Detector Dye and Conventional Excavation In Vitro. Oper Dent. 2007;32:236-241.
https://doi.org/10.2341/06-64
PMid:17555174

 

25. Vural UK, Kütük ZB, Ergin E, Çakır FY, Gürgan S. Comparison of two different methods of detecting residual caries. Restor Dent Endod. 2017;42:48-53.
https://doi.org/10.5395/rde.2017.42.1.48
PMid:28194364 PMCid:PMC5299755

 

26. Akarsu S, Aktuǧ Karademir S. Influence of Bulk-Fill Composites, Polimerization Modes, and Remaining Dentin Thickness on Intrapulpal Temperature Rise. Biomed Res Int. 2019;2019:4250284.
https://doi.org/10.1155/2019/4250284
PMid:31886213 PMCid:PMC6914950

 

27. Lennon ÁM, Attin T, Martens S, Buchalla W. Fluorescence-aided caries excavation (FACE), caries detector, and conventional caries excavation in primary teeth. Pediatr Dent. 2009;31:316-319.

PMid:19722440

 

28. Lynch CD, Roberts JL, Al-Shehri A, Milward PJ, Sloan AJ. An ex-vivo model to determine dental pulp responses to heat and light-curing of dental restorative materials. J Dent. 2018;79:11-18.
https://doi.org/10.1016/j.jdent.2018.08.014
PMid:30176259