Aksoy M, Şen S,
Kaptan A, Büyükkok C, Tulga-Öz F. Does the heat generated by fluorescence-aided
caries excavation system effect the pulp temperature of primary teeth
irreversibly? An in-vitro evaluation of the temperature changes in the
pulp chamber. J Clin Exp Dent. 2021;13(11):e1096-1103.
doi:10.4317/jced.58785
https://doi.org/10.4317/jced.58785
___________
References
1.
Fuks AB, Kupietzky A, Guelmann M. Pulp therapy for the primary dentition. In:
Nowak AJ, Christensen JR, Mabry TR, Townsend JA, Wells MH. editors. Pediatric
Dentistry - Infancy through Adolescence. 6th ed. St. Louis: Elsevier-Saunders
Co.; 2019.p. 329-51. |
|
|
|
2.
Bjørndal L, Fransson H, Bruun G, Markvart M, Kjældgaard M, Näsman P, et al.
Randomized Clinical Trials on Deep Carious Lesions : 5-Year Follow-up. J Dent
Res. 2017;96:747-775 |
|
|
|
3.
Kidd E. Should deciduous teeth be restored? Reflections of a cariologist.
Dent Update. 2012;39:159-62 |
|
|
|
4.
Cortés A, Martignon S, Douglas G. The Visual Presentation of Dental Caries.
In: Ferreira Zandona F, Longbottom A. editors. Detection and Assessment of
Dental Caries. Switzerland: Springer International Publishing; 2019. p.
17-26. |
|
|
|
5.
Banerjee A, Watson TF, Kidd EAM. Dentin caries excavation: A review of
current clinical techniques. Br Dent J. 2000;188:476-482. |
|
|
|
6.
Lennon ÁM, Buchalla W, Switalski L, Stookey GK. Residual caries detection
using visible fluorescence. Caries Res. 2002;36:315-319. |
|
|
|
7.
Lennon ÁM, Buchalla W. Fluorescence-Aided Caries Excavation: FACE. In:
Detection and Assessment of Dental Caries. Springer International Publishing;
2019. p. 99-106. |
|
|
|
8.
Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med
Oral Pathol. 1965;19:515-530. PMid:14263662 |
|
|
|
9.
Hannig M, Bott B. In-vitro pulp temperature rise during composite resin
polymerization with various light-curing sources. Dent Mater. 1999;15:275-281. PMid:10551096 |
|
|
|
10.
Langeland K. Effect of various procedures on the human dental pulp. Pulp
reactions to cavity preparation and gutta purcha. Oral Surg Oral Med Oral
Pathol. 1961;14:210-233. |
|
|
|
11.
Buyukkok C, Kaptan A. Temperature increases in primary teeth pulp chamber
during polymerization of glass ionomer-based restorative materials. Eur Oral
Res. 2021;55:28-33. |
|
|
|
12.
Altan H, Göztas Z, Arslanoglu Z. Bulk-Fill restorative materials in primary
tooth: An intrapulpal temperature changes study. Contemp Clin Dent.
2018;9:52-57. |
|
|
|
13.
Asmussen E, Peutzfeldt A. Temperature rise induced by some light emitting
diode and quartz-tungsten-halogen curing units. Eur J Oral Sci.
2005;113:96-98. |
|
|
|
14.
Lipski M, Woźniak K, Szyszka-Sommerfeld L, Borawski M, Droździk A, Nowicka A.
In Vitro Infrared Thermographic Assessment of Temperature Change in the Pulp
Chamber during Provisionalization: Effect of Remaining Dentin Thickness. J
Healthc Eng. 2020;2020:8838329. |
|
|
|
15.
Lai G, Zhu L, Xu X, et al. An in vitro comparison of fluorescence-aided
caries excavation and conventional excavation by microhardness testing. Clin
Oral Investig. 2014;18:599-605. |
|
|
|
16.
Lennon ÁM. Fluorescence-Aided Caries Excavation (FACE) Compared to
conventional method. Oper Dent. 2003;28:341-345. PMid:12877417 |
|
|
|
17.
Koç-vural U, Ergin E, Gurgan S. Microhardness and shear bond-strength of
carious dentin after fluorescence-aided or conventionally excavation: ( An
in-vitro comparison ). J Clin Exp Dent. 2018;10:e668-672. |
|
|
|
18.
Peskersoy C, Turkun M, Onal B. Comparative clinical evaluation of the
efficacy of a new method for caries diagnosis and excavation. J Conserv Dent.
2015;18:364-8. |
|
|
|
19.
Klein C, Babai A, Ohle C Von, Herz M, Wolff D, Meller C. Minimally invasive
removal of tooth-colored restorations: evaluation of a novel handpiece using
the fluorescence-aided identification technique (FIT).Clin Oral Investig.
2020;24:2735-2743 |
|
|
|
20.
Ramoglu SI, Karamehmetoglu H, Sari T, et al. Temperature rise caused in the
pulp chamber under simulated intrapulpal microcirculation with different
light-curing modes. Angle Orthod. 2015;85:381-5. |
|
|
|
21.
Savas S, Botsali MS, Küçükyilmaz E, Usumez S. Evaluation of temperature
changes in the pulp chamber during polymerization of light-cured pulp-capping
materials by using a VALO LED light curing unit at different curing
distances. Dent Mater J. 2014;33:764-69. |
|
|
|
22.
Kodonas K, Gogos C, Tziafas D. Effect of simulated pulpal microcirculation on
intrapulpal temperature changes following application of heat on tooth
surfaces. Int Endod J. 2009;42:247-252. |
|
|
|
23.
Dhar V, Marghalani AA, Crystal YO, Kumar A, Ritwik P, Tulunoglu O, et al. Use
of vital pulp therapies in primary teeth with deep caries lesions. Pediatr
Dent. 2017;39:e146-159. PMid:29070150 |
|
|
|
24.
Lennon ÁM, Buchalla TAW. Quantity of Remaining Bacteria and Cavity Size After
Excavation with FACE , Caries Detector Dye and Conventional Excavation In
Vitro. Oper Dent. 2007;32:236-241. |
|
|
|
25.
Vural UK, Kütük ZB, Ergin E, Çakır FY, Gürgan S. Comparison of two different
methods of detecting residual caries. Restor Dent Endod. 2017;42:48-53. |
|
|
|
26.
Akarsu S, Aktuǧ Karademir S. Influence of Bulk-Fill Composites,
Polimerization Modes, and Remaining Dentin Thickness on Intrapulpal
Temperature Rise. Biomed Res Int. 2019;2019:4250284. |
|
|
|
27.
Lennon ÁM, Attin T, Martens S, Buchalla W. Fluorescence-aided caries
excavation (FACE), caries detector, and conventional caries excavation in
primary teeth. Pediatr Dent. 2009;31:316-319. PMid:19722440 |
|
|
|
28.
Lynch CD, Roberts JL, Al-Shehri A, Milward PJ, Sloan AJ. An ex-vivo model to
determine dental pulp responses to heat and light-curing of dental
restorative materials. J Dent. 2018;79:11-18. |