Rito-Macedo F, Barroso-Oliveira M, Paranhos LR, Rodrigues-Brum J, Lima IFP, Gomes-França FM, de Brito-Junior RB. Implant insertion angle and depth: Peri-implant bone stress analysis by the finite element method. J Clin Exp Dent. 2021;13(12):e1167-73.

 

doi:10.4317/jced.58930

https://doi.org/10.4317/jced.58930

___________

 

References

1. Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol 2000. 2017;73:7-21.
https://doi.org/10.1111/prd.12185
PMid:28000280

 

2. Buser D, Janner SF, Wittneben JG, Brägger U, Ramseier CA, Salvi GE. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res. 2012;14:839-51.
https://doi.org/10.1111/j.1708-8208.2012.00456.x
PMid:22897683

 

3. Arinc H. Effects of prosthetic material and framework design on stress distribution in dental implants and peripheral bone: a three-dimensional finite element analysis. Med Sci Monit. 2018;24:4279-87.
https://doi.org/10.12659/MSM.908208
PMid:29930240 PMCid:PMC6045918

 

4. Brum JR, Macedo FR, Oliveira MB, Paranhos LR, Brito-Júnior RB, Ramacciato JC. Assessment of the stresses produced on the bone implant/tissue interface to the different insertion angulations of the implant - a three-dimensional analysis by the finite elements method. J Clin Exp Dent. 2020;12:e930-37.
https://doi.org/10.4317/jced.57387
PMid:33154794 PMCid:PMC7600206

 

5. Lan TH, Pan CY, Lee HE, Huang HL, Wang CH. Bone stress analysis of various angulations of mesiodistal implants with splinted crowns in the posterior mandible: a three-dimensional finite element study. Int J Oral Maxillofac Implants. 2010;25:763-70.

PMid:20657872

 

6. Hong HR, Pae A, Kim Y, Paek J, Kim HS, Kwon KR. Effect of implant position, angulation, and attachment height on peri-implant bone stress associated with mandibular two-implant overdentures: a finite element analysis. Int J Oral Maxillofac Implants. 2012;27:e69-76.

PMid:23057045

 

7. Shigemitsu R, Ogawa T, Matsumoto T, Yoda N, Gunji Y, Yamakawa Y, et al. Stress distribution in the peri-implant bone with splinted and non-splinted implants by in vivo loading data-based finite element analysis. Odontology. 2013;101:222-6.
https://doi.org/10.1007/s10266-012-0077-y
PMid:22743716

 

8. Chou HU, Müftü S, Bozkaya D. Combined effects of implant insertion depth and alveolar bone quality on periimplant bone strain induced by a wide-diameter, short implant and a narrow-diameter, long implant. J Prosthet Dent. 2010;104:293-300.
https://doi.org/10.1016/S0022-3913(10)60142-4

PMid:20970535

 

9. Ohyama T, Uchida T, Shibuya N, Nakabayashi S, Ishigami T, Ogawa T. High bone-implant contact achieved by photofunctionalization to reduce periimplant stress: a three-dimensional finite element analysis. Implant Dent. 2013;22:102-8.
https://doi.org/10.1097/ID.0b013e31827b9415
PMid:23314350

 

10. Krithikadatta J, Gopikrishna V, Datta M. CRIS guidelines (checklist for reporting in-vitro studies): a concept note on the need for standardized guidelines for improving quality and transparency in reporting in-vitro studies in experimental dental research. J Conserv Dent. 2014;17:301-4.
https://doi.org/10.4103/0972-0707.136338
PMid:25125839 PMCid:PMC4127685

 

11. Vasco MAA, Castellano MD, López JB, Barbosa de las Casas E. Utilização de tomografias computadorizadas de baixa resolução para construção de modelos geométricos detalhados de mandíbulas com e sem dentes. Rev. int. métodos numér. cálc. diseño ing. 2016;32:1-6.
https://doi.org/10.1016/j.rimni.2014.09.003

 

12. Holmes DC, Diaz-Arnold AM, Leary JM. Influence of post dimension on stress distribution in dentin. J Prosthet Dent. 1996;75:140-7.
https://doi.org/10.1016/S0022-3913(96)90090-6

PMid:8667271

 

13. Agrawal KR, Lucas PW, Prinz JF, Bruce IC. Mechanical properties of foods responsible for resisting food breakdown in the human mouth. Arch Oral Biol. 1997;42:1-9.
https://doi.org/10.1016/S0003-9969(96)00102-1

PMid:9134110

 

14. AZO Materials [Internet]. Titanium Alloys - Ti6Al7Nb Properties and Applications; 2003 [cited 2020 Dec 17]. Available from: https://www.azom.com/article.aspx?ArticleID=2064.

 

15. Ho WF, Chen WK, Wu SC, Hsu HC. Structure, mechanical properties, and grindability of dental Ti-Zr alloys. J Mater Sci Mater Med. 2008;19:3179-86.
https://doi.org/10.1007/s10856-008-3454-x
PMid:18437533

 

16. Mezzomo LA, Corso L, Marczak RJ, Rivaldo EG. Three-dimensional FEA of effects of two dowel-and-core approaches and effects of canal flaring on stress distribution in endodontically treated teeth. J Prosthodont. 2011;20:120-9.
https://doi.org/10.1111/j.1532-849X.2010.00669.x
PMid:21284758

 

17. Karimzadeh A, Ayatollahi M, Shirazi HA. Mechanical properties of a dental nano-composite in moist media determined by nano-scale measurement. Int J Mater Mech Manufactur. 2014;2:67-72.
https://doi.org/10.7763/IJMMM.2014.V2.102

 

18. MatWeb [Internet]. Material Property Data. MatWeb Titanium Ti-6Al-4V (Grade 5), Annealed; 2016 [cited 2019 Dec 16]. Available from: www.matweb.com/search/DataSheet.aspx?MatGUID=a0655d261898456b958e5f825ae8539.

 

19. Trindade FZ, Valandro LF, de Jager N, Bottino MA, Kleverlaan CJ. Elastic properties of lithium disilicate versus feldspathic inlays: effect on the bonding by 3D Finite element analysis. J Prosthodont. 2018;27:741-7.
https://doi.org/10.1111/jopr.12550
PMid:27696615

 

20. Jörn D, Kohorst P, Besdo S, Rucker M, Stiesch M, Borchers L. Influence of lubricant on screw preload and stresses in a finite element model for a dental implant. J Prosthet Dent. 2014;112:340-8.
https://doi.org/10.1016/j.prosdent.2013.10.016
PMid:24529658

 

21. Grandin HM, Berner S, Dard M. A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants. Materials (Basel). 2012;5:1348-60.
https://doi.org/10.3390/ma5081348
PMCid:PMC5448932

 

22. Dard M, Kuehne S, Obrecht M, Grandin M, Helfenstein J, Pippenger BE. Integrative performance analysis of a novel bone level tapered implant. Adv Dent Res. 2016;28(1):28-33.
https://doi.org/10.1177/0022034515624443
PMid:26927485

 

23. Hsu ML, Chen FC, Kao HC, Cheng CK. Influence of off-axis loading of an anterior maxillary implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2007;22:301-9.
https://doi.org/10.1016/S0021-9290(06)85337-6

PMid:17465356

 

24. Bevilacqua M, Tealdo T, Menini M, Pera F, Mossolov A, Drago C, et al. The influence of cantilever length and implant inclination on stress distribution in maxillary implant-supported fixed dentures. J Prosthet Dent. 2011;105:5-13.
https://doi.org/10.1016/S0022-3913(10)60182-5

PMid:21194582

 

25. Matsunaga S, Shirakura Y, Ohashi T, Nakahara K, Tamatsu Y, Takano N, et al. Biomechanical role of peri-implant cancellous bone architecture. Int J Prosthodont. 2010;23:333-8.

PMid:20617221

 

26. Winter W, Möhrle S, Holst S, Karl M. Parameters of implant stability measurements based on resonance frequency and damping capacity: a comparative finite element analysis. Int J Oral Maxillofac Implants. 2010;25:532-9.

PMid:20556252

 

27. Frost HM. Bone "mass" and the "mechanostat": a proposal. Anat Rec. 1987;219:1-9.
https://doi.org/10.1002/ar.1092190104
PMid:3688455

 

28. Yoon KH, Kim SG, Lee JH, Suh SW. 3D finite element analysis of changes in stress levels and distributions for an osseointegrated implant after vertical bone loss. Implant Dent. 2011;20:354-9.
https://doi.org/10.1097/ID.0b013e318226294b
PMid:21811169

 

29. Kang N, Wu YY, Gong P, Yue L, Ou GM. A study of force distribution of loading stresses on implant-bone interface on short implant length using 3-dimensional finite element analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118:519-23.

PMid:25220781

 

30. Rismanchian M, Askari N, Shafiei S. The effect of placement depth of platform-switched implants on periimplant cortical bone stress: a 3-dimensional finite element analysis. Implant Dent. 2013;22:165-9.
https://doi.org/10.1097/ID.0b013e31827f34d0
PMid:23416848