Rito-Macedo F,
Barroso-Oliveira M, Paranhos LR, Rodrigues-Brum J, Lima IFP, Gomes-França FM,
de Brito-Junior RB. Implant insertion angle and depth: Peri-implant bone stress
analysis by the finite element method. J Clin Exp Dent. 2021;13(12):e1167-73.
doi:10.4317/jced.58930
https://doi.org/10.4317/jced.58930
___________
References
1.
Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on
osseointegration: 50 years of progress, current trends and open questions.
Periodontol 2000. 2017;73:7-21. |
|
|
|
2.
Buser D, Janner SF, Wittneben JG, Brägger U, Ramseier CA, Salvi GE. 10-year
survival and success rates of 511 titanium implants with a sandblasted and
acid-etched surface: a retrospective study in 303 partially edentulous
patients. Clin Implant Dent Relat Res. 2012;14:839-51. |
|
|
|
3.
Arinc H. Effects of prosthetic material and framework design on stress
distribution in dental implants and peripheral bone: a three-dimensional
finite element analysis. Med Sci Monit. 2018;24:4279-87. |
|
|
|
4.
Brum JR, Macedo FR, Oliveira MB, Paranhos LR, Brito-Júnior RB, Ramacciato JC.
Assessment of the stresses produced on the bone implant/tissue interface to
the different insertion angulations of the implant - a three-dimensional
analysis by the finite elements method. J Clin Exp Dent. 2020;12:e930-37. |
|
|
|
5.
Lan TH, Pan CY, Lee HE, Huang HL, Wang CH. Bone stress analysis of various
angulations of mesiodistal implants with splinted crowns in the posterior
mandible: a three-dimensional finite element study. Int J Oral Maxillofac
Implants. 2010;25:763-70. PMid:20657872 |
|
|
|
6.
Hong HR, Pae A, Kim Y, Paek J, Kim HS, Kwon KR. Effect of implant position,
angulation, and attachment height on peri-implant bone stress associated with
mandibular two-implant overdentures: a finite element analysis. Int J Oral
Maxillofac Implants. 2012;27:e69-76. PMid:23057045 |
|
|
|
7.
Shigemitsu R, Ogawa T, Matsumoto T, Yoda N, Gunji Y, Yamakawa Y, et al.
Stress distribution in the peri-implant bone with splinted and non-splinted
implants by in vivo loading data-based finite element analysis. Odontology.
2013;101:222-6. |
|
|
|
8.
Chou HU, Müftü S, Bozkaya D. Combined effects of implant insertion depth and
alveolar bone quality on periimplant bone strain induced by a wide-diameter,
short implant and a narrow-diameter, long implant. J Prosthet Dent.
2010;104:293-300. PMid:20970535 |
|
|
|
9.
Ohyama T, Uchida T, Shibuya N, Nakabayashi S, Ishigami T, Ogawa T. High
bone-implant contact achieved by photofunctionalization to reduce periimplant
stress: a three-dimensional finite element analysis. Implant Dent.
2013;22:102-8. |
|
|
|
10.
Krithikadatta J, Gopikrishna V, Datta M. CRIS guidelines (checklist for
reporting in-vitro studies): a concept note on the need for standardized
guidelines for improving quality and transparency in reporting in-vitro
studies in experimental dental research. J Conserv Dent. 2014;17:301-4. |
|
|
|
11.
Vasco MAA, Castellano MD, López JB, Barbosa de las Casas E. Utilização de
tomografias computadorizadas de baixa resolução para construção de modelos
geométricos detalhados de mandíbulas com e sem dentes. Rev. int. métodos
numér. cálc. diseño ing. 2016;32:1-6. |
|
|
|
12.
Holmes DC, Diaz-Arnold AM, Leary JM. Influence of post dimension on stress
distribution in dentin. J Prosthet Dent. 1996;75:140-7. PMid:8667271 |
|
|
|
13.
Agrawal KR, Lucas PW, Prinz JF, Bruce IC. Mechanical properties of foods
responsible for resisting food breakdown in the human mouth. Arch Oral Biol.
1997;42:1-9. PMid:9134110 |
|
|
|
14.
AZO Materials [Internet]. Titanium Alloys - Ti6Al7Nb Properties and
Applications; 2003 [cited 2020 Dec 17]. Available from:
https://www.azom.com/article.aspx?ArticleID=2064. |
|
|
|
15.
Ho WF, Chen WK, Wu SC, Hsu HC. Structure, mechanical properties, and grindability
of dental Ti-Zr alloys. J Mater Sci Mater Med. 2008;19:3179-86. |
|
|
|
16.
Mezzomo LA, Corso L, Marczak RJ, Rivaldo EG. Three-dimensional FEA of effects
of two dowel-and-core approaches and effects of canal flaring on stress
distribution in endodontically treated teeth. J Prosthodont. 2011;20:120-9. |
|
|
|
17.
Karimzadeh A, Ayatollahi M, Shirazi HA. Mechanical properties of a dental
nano-composite in moist media determined by nano-scale measurement. Int J
Mater Mech Manufactur. 2014;2:67-72. |
|
|
|
18.
MatWeb [Internet]. Material Property Data. MatWeb Titanium Ti-6Al-4V (Grade
5), Annealed; 2016 [cited 2019 Dec 16]. Available from: www.matweb.com/search/DataSheet.aspx?MatGUID=a0655d261898456b958e5f825ae8539. |
|
|
|
19.
Trindade FZ, Valandro LF, de Jager N, Bottino MA, Kleverlaan CJ. Elastic
properties of lithium disilicate versus feldspathic inlays: effect on the
bonding by 3D Finite element analysis. J Prosthodont. 2018;27:741-7. |
|
|
|
20.
Jörn D, Kohorst P, Besdo S, Rucker M, Stiesch M, Borchers L. Influence of
lubricant on screw preload and stresses in a finite element model for a
dental implant. J Prosthet Dent. 2014;112:340-8. |
|
|
|
21.
Grandin HM, Berner S, Dard M. A review of titanium zirconium (TiZr) alloys
for use in endosseous dental implants. Materials (Basel). 2012;5:1348-60. |
|
|
|
22.
Dard M, Kuehne S, Obrecht M, Grandin M, Helfenstein J, Pippenger BE.
Integrative performance analysis of a novel bone level tapered implant. Adv
Dent Res. 2016;28(1):28-33. |
|
|
|
23.
Hsu ML, Chen FC, Kao HC, Cheng CK. Influence of off-axis loading of an
anterior maxillary implant: a 3-dimensional finite element analysis. Int J
Oral Maxillofac Implants. 2007;22:301-9. PMid:17465356 |
|
|
|
24.
Bevilacqua M, Tealdo T, Menini M, Pera F, Mossolov A, Drago C, et al. The
influence of cantilever length and implant inclination on stress distribution
in maxillary implant-supported fixed dentures. J Prosthet Dent.
2011;105:5-13. PMid:21194582 |
|
|
|
25.
Matsunaga S, Shirakura Y, Ohashi T, Nakahara K, Tamatsu Y, Takano N, et al.
Biomechanical role of peri-implant cancellous bone architecture. Int J
Prosthodont. 2010;23:333-8. PMid:20617221 |
|
|
|
26.
Winter W, Möhrle S, Holst S, Karl M. Parameters of implant stability
measurements based on resonance frequency and damping capacity: a comparative
finite element analysis. Int J Oral Maxillofac Implants. 2010;25:532-9. PMid:20556252 |
|
|
|
27.
Frost HM. Bone "mass" and the "mechanostat": a proposal.
Anat Rec. 1987;219:1-9. |
|
|
|
28.
Yoon KH, Kim SG, Lee JH, Suh SW. 3D finite element analysis of changes in
stress levels and distributions for an osseointegrated implant after vertical
bone loss. Implant Dent. 2011;20:354-9. |
|
|
|
29.
Kang N, Wu YY, Gong P, Yue L, Ou GM. A study of force distribution of loading
stresses on implant-bone interface on short implant length using
3-dimensional finite element analysis. Oral Surg Oral Med Oral Pathol Oral
Radiol. 2014;118:519-23. PMid:25220781 |
|
|
|
30.
Rismanchian M, Askari N, Shafiei S. The effect of placement depth of
platform-switched implants on periimplant cortical bone stress: a
3-dimensional finite element analysis. Implant Dent. 2013;22:165-9. |