de Lima WP, Andrade AO, Cavalcante RB, Nogueira RLM, Alves PM, Nonaka CFW, Gordón-Núñez MA. Immunoexpression of CXCL12 and CXCR4 in sporadic and Gorlin-Goltz syndrome-related odontogenic keratocysts. J Clin Exp Dent. 2022;14(5):e426-32.

 

doi:10.4317/jced.59561

https://doi.org/10.4317/jced.59561

___________

 

References

1. Schuch LF, de Arruda JAA, Mosconi C, Kirschnick LB, Pinho RFC, Viveiros SK, et al. A Brazilian multicentre study of 2,497 isolated cases of odontogenic keratocysts. Oral Dis. 2020;26:711-5.
https://doi.org/10.1111/odi.13278
PMid:31917876

 

2. Speight PM, Takata T. New tumour entities in the 4th edition of the World Health Organization classification of head and neck tumours: odontogenic and maxillofacial bone tumours. Virchows Arch. 2018;472:331-9.
https://doi.org/10.1007/s00428-017-2182-3
PMid:28674741 PMCid:PMC5886999

 

3. El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ. World Health Organization classification of head and neck tumours. 4th edn. Lyon: IARC Press; 2017:347.

 

4. Nonaka CF, Cavalcante RB, Nogueira RL, de Souza LB, Pinto LP. Immunohistochemical analysis of bone resorption regulators (RANKL and OPG), angiogenic index, and myofibroblasts in syndrome and non-syndrome odontogenic keratocysts. Arch Oral Biol. 2012;57:230-7.
https://doi.org/10.1016/j.archoralbio.2011.08.002
PMid:21871606

 

5. Leite RB, Cavalcante RB, Nogueira RLM, Souza LB, Pereira Pinto L, Nonaka CF. Analysis of GLUT-1, GLUT-3, and angiogenic index in syndromic and non-syndromic keratocystic odontogenic tumors. Braz Oral Res. 2017;31:e34.
https://doi.org/10.1590/1807-3107bor-2017.vol31.0034

 

6. Palacios-Álvarez I, González-Sarmiento R, Fernández-López E. Gorlin Syndrome. Actas Dermosifiliogr. 2018;109:207-17.
https://doi.org/10.1016/j.ad.2017.07.018
PMid:29373110

 

7. Ibrahim N, Nazimi AJ, Ajura AJ, Nordin R, Latiff ZA, Ramli R. The clinical features and expression of bcl-2, cyclin D1, p53, and proliferating cell nuclear antigenin syndromic and nonsyndromic keratocystic odontogenic tumor. J Craniofac Surg. 2016;27:1361-6.
https://doi.org/10.1097/SCS.0000000000002792
PMid:27391504

 

8. Leonardi R, Perrotta RE, Crimi S, Matthews JB, Barbato E, dos Santos JN, et al. Differential expression of TLR3 and TLR4 in ceratocystic odontogenic tumor (KCOT): A comparative immunohistochemical study in primary, recurrent, and nevoid basal cell carcinoma syndrome (NBCCS)-associated lesions. J Craniomaxillofac Surg. 2015;43:733-7.
https://doi.org/10.1016/j.jcms.2015.03.016
PMid:25976039

 

9. Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev. 2018;44:51-68.
https://doi.org/10.1016/j.cytogfr.2018.10.004
PMid:30396776

 

10. Jaracz-Ros A, Bernadat G, Cutolo P, Gallego C, Gustavsson M, Cecon E, et al. Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors. J Leukoc Biol. 2020; 107:1123-35.
https://doi.org/10.1002/JLB.2MA0320-383RR
PMid:32374043 PMCid:PMC7540625

 

11. Smith JM, Johanesen PA, Wendt MK, Binion DG, Dwinell MB. CXCL12 activation of CXCR4 regulates mucosal host defense through stimulation of epithelial cell migration and promotion of intestinal barrier integrity. Am J Physiol Gastrointest Liver Physiol. 2005;288:G316-26.
https://doi.org/10.1152/ajpgi.00208.2004
PMid:15358596

 

12. Lin CH, Shih CH, Tseng CC, Yu CC, Tsai YJ, Bien MY, et al. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways. Plos One. 2014;9:e104746.
https://doi.org/10.1371/journal.pone.0104746
PMid:25121739 PMCid:PMC4133236

 

13. Takabatake Y, Sugiyama T, Kohara H, Matsusaka T, Kurihara H, Koni PA, et al. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J Am Soc Nephrol. 2009;20:1714-23.
https://doi.org/10.1681/ASN.2008060640
PMid:19443644 PMCid:PMC2723985

 

14. Cavalla F, Reyes M, Vernal R, Alvarez C, Paredes R, García-Sesnich J, et al. High levels of CXC ligand 12/stromal cell-derived factor 1 in apical lesions of endodontic origin associated with mast cell infiltration. J Endod. 2013;39:1234-9.
https://doi.org/10.1016/j.joen.2013.06.020
PMid:24041383

 

15. Fukada SY, Silva TA, Garlet GP, Rosa AL, da Silva JS, Cunha FQ. Factors involved in the T helper type 1 and type 2 cell commitment and osteoclast regulation in inflammatory apical diseases. Oral Microbiol Immunol. 2009;24:25-31.
https://doi.org/10.1111/j.1399-302X.2008.00469.x
PMid:19121066

 

16. Zhao K, Yao Y, Luo X, Lin B, Huang Y, Zhou Y, et al. LYG-202 inhibits activation of endothelial cells and angiogenesis through CXCL12/CXCR7 pathway in breast cancer. Carcinogenesis. 2018;39:588-600.
https://doi.org/10.1093/carcin/bgy007
PMid:29390073

 

17. Scala S. Molecular pathways: targeting the CXCR4-CXCL12 axis untapped potential in the tumor microenvironment. Clin Cancer Res. 2015;21:4278-85.
https://doi.org/10.1158/1078-0432.CCR-14-0914
PMid:26199389

 

18. De-Colle C, Mönnich D, Welz S, Boeke S, Sipos B, Fend F, et al. SDF-1/CXCR4 expression in head and neck cancer and outcome after postoperative radiochemotherapy. Clin Transl Radiat Oncol. 2017;5:28-36.
https://doi.org/10.1016/j.ctro.2017.06.004
PMid:29594214 PMCid:PMC5833920

 

19. Evans DG, Ladusans EJ, Rimmer S, Burnell LD, Thakker N, Farndon PA. Complications of the naevoid basal cell carcinoma syndrome: results of a population based study. J Med Genet. 1993;30:460-4.
https://doi.org/10.1136/jmg.30.6.460
PMid:8326488 PMCid:PMC1016416

 

20. Brito LNS, de Lemos Almeida MMR, de Souza LB, Alves PM, Nonaka CFW, Godoy GP. Immunohistochemical analysis of galectins-1, -3, and -7 in periapical granulomas, radicular cysts, and residual radicular cysts. J Endod. 2018;44:728-33.
https://doi.org/10.1016/j.joen.2018.01.008
PMid:29510866

 

21. Agle KA, Vongsa RA, Dwinell MB. Chemokine stimulation promotes enterocyte migration through laminin-specific integrins. Am J Physiol Gastrointest Liver Physiol. 2011;301:G968-80.
https://doi.org/10.1152/ajpgi.00208.2011
PMid:21921288 PMCid:PMC3233784

 

22. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, et al. Autocrine TGF-b and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A. 2010;107:20009-14.
https://doi.org/10.1073/pnas.1013805107
PMid:21041659 PMCid:PMC2993333

 

23. Yasumoto K, Koizumi K, Kawashima A, Saitoh Y, Arita Y, Shinohara K, et al. Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res. 2006; 66:2181-7.
https://doi.org/10.1158/0008-5472.CAN-05-3393
PMid:16489019

 

24. Benredjem B, Girard M, Rhainds D, St-Onge G, Heveker N. Mutational analysis of atypical chemokine receptor 3 (ACKR3/CXCR7) interaction with its chemokine ligands CXCL11 and CXCL12. J Biol Chem. 2017;292:31-42.
https://doi.org/10.1074/jbc.M116.762252
PMid:27875312 PMCid:PMC5217689

 

25. Darakhshan S, Fatehi A, Hassanshahi G, Mahmoodi S, Hashemi MS, Karimabad MN. Serum concentration of angiogenic (CXCL1, CXCL12) and angiostasis (CXCL9, CXCL10) CXC chemokines are differentially altered in normal and gestational diabetes mellitus associated pregnancies. J Diabetes Metab Disord. 2019;18:371-8.
https://doi.org/10.1007/s40200-019-00421-2
PMid:31890662 PMCid:PMC6915176

 

26. Lounsbury N. Advances in CXCR7 modulators. Pharmaceuticals. 2020;13:33.
https://doi.org/10.3390/ph13020033
PMid:32098047 PMCid:PMC7169404

 

27. Nibbs RJB, Graham GJ. Immune regulation by atypical chemokine receptors. Nat Rev Immunol. 2013;13:815-29.
https://doi.org/10.1038/nri3544
PMid:24319779

 

28. Zhang L, Zhou Y, Sun X, Zhou J, Yang P. CXCL12 overexpression promotes the angiogenesis potential of periodontal ligament stem cells. Sci Rep. 2017;7:10286.
https://doi.org/10.1038/s41598-017-10971-1
PMid:28860570 PMCid:PMC5579269

 

29. Bianchi ME, Mezzapelle R. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration. Front Immunol. 2020;11:2109.
https://doi.org/10.3389/fimmu.2020.02109
PMid:32983169 PMCid:PMC7484992

 

30. Tirone M, Tran NL, Ceriotti C, Gorzanelli A, Canepari M, Bottinelli R, et al. High mobility group box 1 orchestrates tissue regeneration via CXCR4. J Exp Med. 2018;215:303-18.
https://doi.org/10.1084/jem.20160217
PMid:29203538 PMCid:PMC5748844