Ashtijoo Z, Pishevar L, Malekipour MR, Khodaei M, Sabouri Z. Comparative evaluation of incorporation calcium silicate and calcium phosphate nanoparticles on biomimetic dentin remineralization and bioactivity in an etch-and-rinse adhesive system. J Clin Exp Dent. 2022;14(11):e903-10.

 

doi:10.4317/jced.59817

https://doi.org/10.4317/jced.59817

___________

 

References

1. Pashley DH, Swift Jr EJ. Dentin bonding. Journal of esthetic and restorative dentistry: official publication of the American Academy of Esthetic Dentistry. 2008;20:153-4.
https://doi.org/10.1111/j.1708-8240.2008.00169.x
PMid:18533974

 

2. Klont B, Ten Cate J. Remineralization of bovine incisor root lesions in vitro: the role of the collagenous matrix. Caries research. 1991;25:39-45.
https://doi.org/10.1159/000261340
PMid:2070381

 

3. Liu Y, Li N, Qi Yp, Dai L, Bryan TE, Mao J, et al. Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly. Advanced materials. 2011;23:975-80.
https://doi.org/10.1002/adma.201003882
PMid:21341310 PMCid:PMC3137871

 

4. Profeta AC, Mannocci F, Foxton R, Watson T, Feitosa VP, De Carlo B, et al. Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces. Dental Materials. 2013;29:729-41.
https://doi.org/10.1016/j.dental.2013.04.001
PMid:23639454

 

5. Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dental Materials. 2010;26:471-82.
https://doi.org/10.1016/j.dental.2010.01.005
PMid:20153516

 

6. Tauböck TT, Zehnder M, Schweizer T, Stark WJ, Attin T, Mohn D. Functionalizing a dentin bonding resin to become bioactive. Dental Materials. 2014;30:868-75.
https://doi.org/10.1016/j.dental.2014.05.029
PMid:24946984

 

7. Xu HH, Moreau JL, Sun L, Chow LC. Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials. 2008;29:4261-7.
https://doi.org/10.1016/j.biomaterials.2008.07.037
PMid:18708252 PMCid:PMC2605014

 

8. Sahin F, Oznurhan F. Antibacterial efficacy and remineralization capacity of glycyrrhizic acid added casein phosphopeptide-amorphous calcium phosphate. Microscopy research and technique. 2020;83:744-54.
https://doi.org/10.1002/jemt.23465
PMid:32191375

 

9. Vecstaudza J, Gasik M, Locs J. Amorphous calcium phosphate materials: Formation, structure and thermal behaviour. Journal of the European Ceramic Society. 2019;39:1642-9.
https://doi.org/10.1016/j.jeurceramsoc.2018.11.003

 

10. Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A. Effect of synthetic amorphous calcium phosphate nanoparticles on the physicochemical and biological properties of resin-modified glass ionomer cements. Materials Science and Engineering: C. 2019;98:227-40.
https://doi.org/10.1016/j.msec.2018.12.129
PMid:30813023

 

11. Ürkmez EŞ, Pınar Erdem A. Bioactivity evaluation of calcium silicate-based endodontic materials used for apexification. Australian Endodontic Journal. 2020;46:60-7.
https://doi.org/10.1111/aej.12367
PMid:31397018

 

12. Zhou W, Liu S, Zhou X, Hannig M, Rupf S, Feng J, et al. Modifying adhesive materials to improve the longevity of resinous restorations. International journal of molecular sciences. 2019;20:723.
https://doi.org/10.3390/ijms20030723
PMid:30744026 PMCid:PMC6387348

 

13. Yang DL, Sun Q, Niu H, Wang RL, Wang D, Wang JX. The properties of dental resin composites reinforced with silica colloidal nanoparticle clusters: Effects of heat treatment and filler composition. Composites Part B: Engineering. 2020;186:107791.
https://doi.org/10.1016/j.compositesb.2020.107791

 

14. Liang K, Wang S, Tao S, Xiao S, Zhou H, Wang P, et al. Dental remineralization via poly (amido amine) and restorative materials containing calcium phosphate nanoparticles. International journal of oral science. 2019;11:1-12.
https://doi.org/10.1038/s41368-019-0048-z
PMid:31068570 PMCid:PMC6506538

 

15. Prati C, Gandolfi MG. Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dental materials. 2015;31:351-70.
https://doi.org/10.1016/j.dental.2015.01.004
PMid:25662204

 

16. Solhi L, Atai M, Nodehi A, Imani M. Poly (methacrylic acid) modified spherical and platelet hybrid nanoparticles as reinforcing fillers for dentin bonding systems: Synthesis and properties. Journal of the Mechanical Behavior of Biomedical Materials. 2020;109:103840.
https://doi.org/10.1016/j.jmbbm.2020.103840
PMid:32543405

 

17. Cao Y, Mei ML, Xu J, Lo EC, Li Q, Chu CH. Biomimetic mineralisation of phosphorylated dentine by CPP-ACP. Journal of dentistry. 2013;41:818-25.
https://doi.org/10.1016/j.jdent.2013.06.008
PMid:23810733

 

18. Firuzeh M, Labbaf S, Sabouri Z. A facile synthesis of mono-dispersed, spherical and mesoporous bioactive glass nanoparticles for biomedical applications. Journal of Non-Crystalline Solids. 2021;554:120598.
https://doi.org/10.1016/j.jnoncrysol.2020.120598

 

19. Gholami S, Labbaf S, Houreh AB, Ting H-K, Jones JR, Esfahani M-HN. Long term effects of bioactive glass particulates on dental pulp stem cells in vitro. Biomedical Glasses. 2017;3:96-103.
https://doi.org/10.1515/bglass-2017-0009

 

20. Fathi M, Mohammadi AD. Preparation and characterization of sol-gel bioactive glass coating for improvement of biocompatibility of human body implant. Materials Science and Engineering: A. 2008;474:128-33.
https://doi.org/10.1016/j.msea.2007.05.041

 

21. Lin S, Jones JR. The effect of serum proteins on apatite growth for 45S5 Bioglass and common sol-gel derived glass in SBF. Biomedical Glasses. 2018;4:13-20.
https://doi.org/10.1515/bglass-2018-0002

 

22. Ryou H, Niu LN, Dai L, Pucci C, Arola D, Pashley DH, et al. Effect of biomimetic remineralization on the dynamic nanomechanical properties of dentin hybrid layers. Journal of dental research. 2011;90:1122-8.
https://doi.org/10.1177/0022034511414059
PMid:21730254 PMCid:PMC3169886

 

23. Daneshpoor N, Pishevar L. Comparative evaluation of bioactive cements on biomimetic remineralization of dentin. Journal of clinical and experimental dentistry. 2020;12:e291.
https://doi.org/10.4317/jced.56500
PMid:32190201 PMCid:PMC7071542

 

24. Prakash VCA, Venda I, Thamizharasi V, Sathya E. A comparative study on microemulsion synthesis of hydroxyapatite powders by ionic and Non-Ionic surfactants. Materials Today: Proceedings. 2020.

 

25. Sadat-Shojai M. Preparation of hydroxyapatite nanoparticles: comparison between hydrothermal and solvo-treatment processes and colloidal stability of produced nanoparticles in a dilute experimental dental adhesive. Journal of the Iranian Chemical Society. 2009;6:386-92.
https://doi.org/10.1007/BF03245848

 

26. Ravanbakhsh M, Labbaf S, Karimzadeh F, Pinna A, Houreh AB, Nasr-Esfahani M. Mesoporous bioactive glasses for the combined application of osteosarcoma treatment and bone regeneration. Materials Science and Engineering: C. 2019;104:109994.
https://doi.org/10.1016/j.msec.2019.109994
PMid:31500021

 

27. Abuna G, Feitosa VP, Correr AB, Cama G, Giannini M, Sinhoreti MA, et al. Bonding performance of experimental bioactive/biomimetic self-etch adhesives doped with calcium-phosphate fillers and biomimetic analogs of phosphoproteins. Journal of dentistry. 2016;52:79-86.
https://doi.org/10.1016/j.jdent.2016.07.016
PMid:27472956

 

28. Foster JA, Berzins DW, Bradley TG. Bond strength of an amorphous calcium phosphate-containing orthodontic adhesive. The Angle Orthodontist. 2008;78:339-44.
https://doi.org/10.2319/020807-60
PMid:18251600

 

29. Minick GT, Oesterle LJ, Newman SM, Shellhart WC. Bracket bond strengths of new adhesive systems. American journal of orthodontics and dentofacial orthopedics. 2009;135:771-6.
https://doi.org/10.1016/j.ajodo.2007.06.021
PMid:19524837