Farahat DS, El-Wassefy NA. Effects of food-simulating solutions on the surface properties of two CAD/CAM resin composites. J Clin Exp Dent. 2022;14(10):e782-90.

 

doi:10.4317/jced.59822

https://doi.org/10.4317/jced.59822

___________

 

References

1. Li RWK, Chow TW, Matinlinna JP. Ceramic dental biomaterials and CAD/CAM technology: state of the art. J Prosthodont Res. 2014;58:208-16.
https://doi.org/10.1016/j.jpor.2014.07.003
PMid:25172234

 

2. Fasbinder DJ. Chairside CAD/CAM: an overview of restorative material options. Compend Contin Educ Dent. 2012;33:50-2.

PMid:22432177

 

3. Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From artisanal to CAD-CAM blocks: state of the art of indirect composites. J Dent Res. 2016;95:487-95.
https://doi.org/10.1177/0022034516634286
PMid:26933136

 

4. Phan AC, Tang M, Nguyen JF, Ruse ND, Sadoun M. High-temperature high-pressure polymerized urethane dimethacrylate-mechanical properties and monomer release. Dent Mater. 2014;30:350-6.
https://doi.org/10.1016/j.dental.2013.12.009
PMid:24447416

 

5. Phan AC, Béhin P, Stoclet G, Ruse ND, Nguyen JF, Sadoun M. Optimum pressure for the high-pressure polymerization of urethane dimethacrylate. Dent Mater. 2015;31:406-12.
https://doi.org/10.1016/j.dental.2015.01.010
PMid:25681220

 

6. Ionescu AC, Hahnel S, König A, Brambilla E. Resin composite blocks for dental CAD/CAM applications reduce biofilm formation in vitro. Dent Mater. 2020;36:603-16.
https://doi.org/10.1016/j.dental.2020.03.016
PMid:32238271

 

7. Hensel F, Koenig A, Doerfler H-M, Fuchs F, Rosentritt M, Hahnel S. CAD/CAM Resin-Based Composites for Use in Long-Term Temporary Fixed Dental Prostheses. Polymers (Basel). 2021;13:3469.
https://doi.org/10.3390/polym13203469
PMid:34685228 PMCid:PMC8539791

 

8. Blatz MB, Conejo J. The Current State of Chairside Digital Dentistry and Materials. Dent Clin N Am. 2019;63:175-97.
https://doi.org/10.1016/j.cden.2018.11.002
PMid:30825985

 

9. Spitznagel FA, Boldt J, Gierthmuehlen PC. CAD/CAM ceramic restorative materials for natural teeth. J Dent Res. 2018;97:1082-91.
https://doi.org/10.1177/0022034518779759
PMid:29906206

 

10. Shin MA, Drummond JL. Evaluation of chemical and mechanical properties of dental composites. J Biomed Mater Res. 1999;48:540-5.
https://doi.org/10.1002/(SICI)1097-4636(1999)48:4<540::AID-JBM21>3.0.CO;2-3

PMid:10421699

 

11. Yesilyurt C, Yoldas O, Altintas SH, Kusgoz A. Effects of food-simulating liquids on the mechanical properties of a silorane-based dental composite. Dent Mater J. 2009;28:362-7.
https://doi.org/10.4012/dmj.28.362
PMid:19662736

 

12. Badra VV, Faraoni JJ, Ramos RP, Palma-Dibb RG. Influence of different beverages on the microhardness and surface roughness of resin composites. Oper Dent. 2005;30:213-9.

PMid:15853107

 

13. Alrahlah A, Khan R, Alotaibi K, Almutawa Z, Fouad H, Elsharawy M, et al. Simultaneous evaluation of creep deformation and recovery of bulk-fill dental composites immersed in food-simulating liquids. Materials. 2018;11:1180
https://doi.org/10.3390/ma11071180
PMid:29996519 PMCid:PMC6073768

 

14. Yap AU, Low JS, Ong LF. Effect of food-simulating liquids on surface characteristics of composite and polyacid-modified composite restoratives. Oper Dent. 2000;25:170-6.

PMid:11203812

 

15. Babaier R, Watts DC, Silikas N. Effects of three food-simulating liquids on the roughness and hardness of CAD/CAM polymer composites. Dent Mater. 2022;38:874-85.
https://doi.org/10.1016/j.dental.2022.04.001
PMid:35431089

 

16. Yap AU, Tan DT, Goh BK, Kuah HG, Goh M. Effect of food-simulating liquids on the flexural strength of composite and polyacid-modified composite restoratives. Oper Dent. 2000;25:202-8.

PMid:11203817

 

17. Schwartz J, Söderholm K. Effects of filler size, water, and alcohol on hardness and laboratory wear of dental composites. Acta Odontol Scand. 2004;62:102-6.
https://doi.org/10.1080/00016350410005555
PMid:15198391

 

18. Vouvoudi EC, Sideridou ID. Dynamic mechanical properties of dental nanofilled light-cured resin composites: Effect of food-simulating liquids. J Mech Behav Biomed Mater. 2012;10:87-96..
https://doi.org/10.1016/j.jmbbm.2012.02.007
PMid:22520421

 

19. Pfeifer CS, Silva LR, Kawano Y, Braga RR. Bis-GMA co-polymerizations: influence on conversion, flexural properties, fracture toughness and susceptibility to ethanol degradation of experimental composites. Dent Mater. 2009;25:1136-41.
https://doi.org/10.1016/j.dental.2009.03.010
PMid:19395016

 

20. Par M, Tarle Z, Hickel R, Ilie N. Mechanical properties of experimental composites containing bioactive glass after artificial aging in water and ethanol. Clin Oral Investig. 2019;23:2733-41.
https://doi.org/10.1007/s00784-018-2713-6
PMid:30361794

 

21. Sideridou ID, Karabela MM, Bikiaris DN. Aging studies of light cured dimethacrylate-based dental resins and a resin composite in water or ethanol/water. Dent Mater. 2007;23:1142-9.
https://doi.org/10.1016/j.dental.2006.06.049
PMid:17118438

 

22. Ducke VM, Ilie N. Aging behavior of high-translucent CAD/CAM resin-based composite blocks. J Mech Behav Biomed Mater. 2021;115:104269.
https://doi.org/10.1016/j.jmbbm.2020.104269
PMid:33341738

 

23. Drummond JL. Degradation, Fatigue, and Failure of Resin Dental Composite Materials. J Dent Res. 2008;87:710-9.
https://doi.org/10.1177/154405910808700802
PMid:18650540 PMCid:PMC2561305

 

24. Ferracane JL, Marker VA. Solvent degradation and reduced fracture toughness in aged composites. J Dent Res. 1992;71:13-9.
https://doi.org/10.1177/00220345920710010101
PMid:1531485

 

25. Sunbul H al, Silikas N, Watts DC. Surface and bulk properties of dental resin- composites after solvent storage. Dent Mater. 2016;32:987-97.
https://doi.org/10.1016/j.dental.2016.05.007
PMid:27238832

 

26. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006;22:211-22.
https://doi.org/10.1016/j.dental.2005.05.005
PMid:16087225

 

27. Ayad NM, Bahgat HA, Kaba A, Hussain E, Buholayka MH. Food simulating organic solvents for evaluating crosslink density of bulk fill composite resin Int J Dent. 2017;2017:1797091.
https://doi.org/10.1155/2017/1797091
PMid:28487739 PMCid:PMC5405598

 

28. Marghalani HY, Watts DC. Viscoelastic stability of resin-composites aged in food-simulating solvents. Dent Mater. 2013;29:963-70.
https://doi.org/10.1016/j.dental.2013.07.009
PMid:23910977

 

29. Takeshige F, Kawakami Y, Hayashi M, Ebisu S. Fatigue behavior of resin composites in aqueous environments. Dent Mater. 2007;23:893-9.
https://doi.org/10.1016/j.dental.2006.06.031
PMid:17007919

 

30. Szczesio-Wlodarczyk A, Sokolowski J, Kleczewska J, Bociong K. Ageing of dental composites based on methacrylate resins-A critical review of the causes and method of assessment. Polymers (Basel). 2020;12:882.
https://doi.org/10.3390/polym12040882
PMid:32290337 PMCid:PMC7240588

 

31. Kim KH, Ong JL, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent. 2002;87:642-9.
https://doi.org/10.1067/mpr.2002.125179
PMid:12131887

 

32. Sarrett DC, Coletti DP, Peluso AR. The effects of alcoholic beverages on composite wear. Dent Mater. 2000;16:62-7.
https://doi.org/10.1016/S0109-5641(99)00088-3

PMid:11203525