Abesi F, Hozuri
M, Zamani M. Performance of artificial intelligence using cone-beam computed
tomography for segmentation of oral and maxillofacial structures: A systematic
review and meta-analysis. J Clin Exp Dent.
2023;15(11):e954-62.
doi:10.4317/jced.60287
https://doi.org/10.4317/jced.60287
_______
References
1.
Kaasalainen T, Ekholm M, Siiskonen T, Kortesniemi M. Dental cone beam CT: An
updated review. Phys Med. 2021;88:193-217. |
|
|
|
2.
Abesi F, Alimohamadi M. Cone beam computed tomography (CBCT) findings of
fungal sinusitis in post COVID-19 patient: A case report. Caspian J Intern
Med. 2022;13:307-10. PMid:35872677
PMCid:PMC9272968 |
|
|
|
3.
Maspero C, Abate A, Bellincioni F, Cavagnetto D, Lanteri V, Costa A, et al.
Comparison of a tridimensional cephalometric analysis performed on 3T-MRI
compared with CBCT: a pilot study in adults. Prog Orthod. 2019;20:40. |
|
|
|
4.
Abesi F, Motaharinia S, Moudi E, Haghanifar S, Khafri S. Prevalence and
anatomical variations of maxillary sinus septa: A cone-beam computed tomography
analysis. J Clin Exp Dent. 2022;14:e689-e93. |
|
|
|
5.
Patel S, Brown J, Pimentel T, Kelly RD, Abella F, Durack C. Cone beam
computed tomography in Endodontics - a review of the literature. Int Endod J.
2019;52:1138-52. |
|
|
|
6.
Kapila SD, Nervina JM. CBCT in orthodontics: assessment of treatment outcomes
and indications for its use. Dentomaxillofac Radiol. 2015;44:20140282. |
|
|
|
7.
Barnett CW, Glickman GN, Umorin M, Jalali P. Interobserver and intraobserver
reliability of cone-beam computed tomography in identification of apical
periodontitis. J Endod. 2018;44:938-40. |
|
|
|
8.
Tsolakis IA, Kolokitha OE, Papadopoulou E, Tsolakis AI, Kilipiris EG, Palomo
JM. Artificial intelligence as an aid in CBCT airway analysis: A systematic
review. Life (Basel). 2022;12:1894. |
|
|
|
9.
Lerner H, Mouhyi J, Admakin O, Mangano F. Artificial intelligence in fixed
implant prosthodontics: a retrospective study of 106 implant-supported
monolithic zirconia crowns inserted in the posterior jaws of 90 patients. BMC
Oral Health. 2020;20:80. |
|
|
|
10.
Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry:
chances and challenges. J Dent Res. 2020;99:769-74. |
|
|
|
11.
Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry. J
Dent Res. 2021;100:232-44. |
|
|
|
12.
Mureșanu S, Almășan O, Hedeșiu M, Dioșan L, Dinu C, Jacobs R. Artificial
intelligence models for clinical usage in dentistry with a focus on
dentomaxillofacial CBCT: a systematic review. Oral Radiol. 2023;39:18-40. |
|
|
|
13.
Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance
of artificial intelligence applications in dental and maxillofacial
radiology: A systematic review. Dentomaxillofac Radiol. 2020;49:20190107. |
|
|
|
14.
Shujaat S, Jazil O, Willems H, Van Gerven A, Shaheen E, Politis C, et al.
Automatic segmentation of the pharyngeal airway space with convolutional
neural network. J Dent. 2021;111:103705. |
|
|
|
15.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for
systematic reviews and meta-analyses: the PRISMA statement. PLoS Med.
2009;6:e1000097. |
|
|
|
16.
Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, et al.
PROBAST: A tool to assess risk of bias and applicability of prediction model
studies: Explanation and elaboration. Ann Intern Med. 2019;170:W1-w33. |
|
|
|
17.
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
meta-analyses. BMJ. 2003;327:557-60. |
|
|
|
18.
Fontenele RC, Gerhardt MDN, Pinto JC, Van Gerven A, Willems H, Jacobs R, et
al. Influence of dental fillings and tooth type on the performance of a novel
artificial intelligence-driven tool for automatic tooth segmentation on CBCT
images - A validation study. J Dent. 2022;119:104069. |
|
|
|
19.
Gillot M, Baquero B, Le C, Deleat-Besson R, Bianchi J, Ruellas A, et al.
Automatic multi-anatomical skull structure segmentation of cone-beam computed
tomography scans using 3D UNETR. PLoS One. 2022;17:e0275033. |
|
|
|
20.
Hung KF, Ai QYH, King AD, Bornstein MM, Wong LM, Leung YY. Automatic
detection and segmentation of morphological changes of the maxillary sinus
mucosa on cone-beam computed tomography images using a three-dimensional
convolutional neural network. Clin Oral Investig. 2022;26:3987-98. |
|
|
|
21.
Lahoud P, Diels S, Niclaes L, Van Aelst S, Willems H, Van Gerven A, et al.
Development and validation of a novel artificial intelligence driven tool for
accurate mandibular canal segmentation on CBCT. J Dent. 2022;116:103891. |
|
|
|
22.
Leonardi R, Lo Giudice A, Farronato M, Ronsivalle V, Allegrini S, Musumeci G,
et al. Fully automatic segmentation of sinonasal cavity and pharyngeal airway
based on convolutional neural networks. Am J Orthod Dentofacial Orthop.
2021;159:824-35.e1. |
|
|
|
23.
Li Q, Chen K, Han L, Zhuang Y, Li J, Lin J. Automatic tooth roots
segmentation of cone beam computed tomography image sequences using U-net and
RNN. J Xray Sci Technol. 2020;28:905-22. |
|
|
|
24.
Lim HK, Jung SK, Kim SH, Cho Y, Song IS. Deep semi-supervised learning for
automatic segmentation of inferior alveolar nerve using a convolutional
neural network. BMC Oral Health. 2021;21:630. |
|
|
|
25.
Lin X, Fu Y, Ren G, Yang X, Duan W, Chen Y, et al. Micro-computed
tomography-guided artificial intelligence for pulp cavity and tooth
segmentation on cone-beam computed tomography. J Endod. 2021;47:1933-41. |
|
|
|
26.
Lo Giudice A, Ronsivalle V, Spampinato C, Leonardi R. Fully automatic
segmentation of the mandible based on convolutional neural networks (CNNs).
Orthod Craniofac Res. 2021;24:100-7. |
|
|
|
27.
Minnema J, van Eijnatten M, Hendriksen AA, Liberton N, Pelt DM, Batenburg KJ,
et al. Segmentation of dental cone-beam CT scans affected by metal artifacts
using a mixed-scale dense convolutional neural network. Med Phys.
2019;46:5027-35. |
|
|
|
28.
Nogueira-Reis F, Morgan N, Nomidis S, Van Gerven A, Oliveira-Santos N, Jacobs
R, et al. Three-dimensional maxillary virtual patient creation by
convolutional neural network-based segmentation on cone-beam computed
tomography images. Clin Oral Investig. 2022;27:1133-41. |
|
|
|
29.
Pei Y, Ai X, Zha H, Xu T, Ma G. 3D exemplar-based random walks for tooth
segmentation from cone-beam computed tomography images. Med Phys.
2016;43:5040. |
|
|
|
30.
Qiu B, van der Wel H, Kraeima J, Glas HH, Guo J, Borra RJH, et al. Mandible
segmentation of dental CBCT scans affected by metal artifacts using
coarse-to-fine learning model. J Pers Med. 2021;11:560. |
|
|
|
31.
Shaheen E, Leite A, Alqahtani KA, Smolders A, Van Gerven A, Willems H, et al.
A novel deep learning system for multi-class tooth segmentation and
classification on cone beam computed tomography. A validation study. J Dent.
2021;115:103865. |
|
|
|
32.
Sin Ç, Akkaya N, Aksoy S, Orhan K, Öz U. A deep learning algorithm proposal
to automatic pharyngeal airway detection and segmentation on CBCT images.
Orthod Craniofac Res. 2021;24 Suppl 2:117-23. |
|
|
|
33.
Torosdagli N, Liberton DK, Verma P, Sincan M, Lee JS, Bagci U. Deep Geodesic
Learning for Segmentation and Anatomical Landmarking. IEEE Trans Med Imaging.
2019;38:919-31. |
|
|
|
34.
Verhelst PJ, Smolders A, Beznik T, Meewis J, Vandemeulebroucke A, Shaheen E,
et al. Layered deep learning for automatic mandibular segmentation in
cone-beam computed tomography. J Dent. 2021;114:103786. |
|
|
|
35.
Wang H, Minnema J, Batenburg KJ, Forouzanfar T, Hu FJ, Wu G. Multiclass CBCT
image segmentation for orthodontics with deep learning. J Dent Res.
2021;100:943-9. |
|
|
|
36.
Wang L, Chen KC, Shi F, Liao S, Li G, Gao Y, et al. Automated segmentation of
CBCT image using spiral CT atlases and convex optimization. Med Image Comput
Comput Assist Interv. 2013;16:251-8. |
|
|
|
37.
Wang L, Gao Y, Shi F, Li G, Chen KC, Tang Z, et al. Automated segmentation of
dental CBCT image with prior-guided sequential random forests. Med Phys.
2016;43:336. |
|
|
|
38.
Wang X, Pastewait M, Wu TH, Lian C, Tejera B, Lee YT, et al. 3D morphometric
quantification of maxillae and defects for patients with unilateral cleft
palate via deep learning-based CBCT image auto-segmentation. Orthod Craniofac
Res. 2021;24:108-16. |
|
|
|
39.
Zhang J, Liu M, Wang L, Chen S, Yuan P, Li J, et al. Context-guided fully
convolutional networks for joint craniomaxillofacial bone segmentation and
landmark digitization. Med Image Anal. 2020;60:101621. |
|
|
|
40.
Zheng Q, Ge Z, Du H, Li G. Age estimation based on 3D pulp chamber
segmentation of first molars from cone-beam-computed tomography by integrated
deep learning and level set. Int J Legal Med. 2021;135:365-73. |
|
|
|
41.
Lee S, Woo S, Yu J, Seo J, Lee J, Lee C. Automated CNN-Based tooth
segmentation in cone-beam ct for dental implant planning. IEEE Access.
2020;8:50507-18. |