Blanco-Victorio
DJ, López-Ramos RP, Blanco-Rodriguez JD, López-Luján NA, León-Untiveros GF,
Siccha-Macassi AL. Early childhood caries (ECC) prediction models using Machine
Learning. J Clin Exp Dent. 2024;16(12):e1523-29.
doi:10.4317/jced.61514
https://doi.org/10.4317/jced.61514
_____
References
1.
Watt RG, Daly B, Allison P, Macpherson LMD, Venturelli R, Listl S. Ending the
neglect of global oral health: Time for radical action. Lancet.
2019;394:261-272. |
|
|
|
2.
Chen X, Daliri EB, Kim N, Kim JR, Yoo D, Oh DH. Microbial Etiology and prevention
of dental caries: Exploiting natural products to inhibit cariogenic biofilms.
Pathogens. 2020;9:569. |
|
|
|
3.
Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry:
Chances and Challenges. J Dent Res. 2020;99(7):769-774. |
|
|
|
4.
Rodrigues JA, Krois J, Schwendicke F. Demystifying artificial intelligence
and deep learning in dentistry. Braz Oral Res. 2021;13;35:10-19. |
|
|
|
5.
Suvarna B, Gajanan KB, Mukesh DP. A comprehensive survey of deep learning
algorithms and applications in dental radiograph analysis. Healthcare
Analytics. 2023;4(2):1-9. |
|
|
|
6.
Talpur S, Azim F, Rashid M, Syed SA, Talpur BA, Khan SJ. Uses of Different
Machine Learning Algorithms for Diagnosis of Dental Caries. J Healthc Eng.
2022; 2022:32-43. |
|
|
|
7.
Lee KS, Jung SK, Ryu JJ, Shin SW, Choi J. Evaluation of transfer learning
with deep convolutional neural networks for screening osteoporosis in dental
panoramic radiographs. J Clin Med. 2020;9(2):392. |
|
|
|
8.
Surlari Z, Budal DG, Lupu CI, Stelea CG, Butnaru OM, Luchian I. Current
Progress and Challenges of Using Artificial Intelligence in Clinical
Dentistry-A Narrative Review. J Clin Med. 2023;12(4):73-78. |
|
|
|
9.
Sivari E, Senirkentli GB, Bostanci E, Guzel MS. Acici K, Asuroglu T. Deep
Learning in Diagnosis of Dental Anomalies and Diseases: A Systematic Review.
Diagnostics. 2023:13(4):2-12. |
|
|
|
10.
Lee CT, Kabir T, Nelson J, Sheng S, Meng HW, Van Dyke TE, et al. Use of the
deep learning approach to measure alveolar bone level. J Clin Periodontol.
2022;49:260-269. |
|
|
|
11.
Radha RC, Raghavendra BS, Subhash BV, Rajan J, Narasimhadhan AV. Machine
learning techniques for periodontitis and dental caries detection: A
narrative review. International Journal of Medical Informatics. 2023:17(8):1-16. |
|
|
|
12.
Li H, Zhou J, Zhou Y, Chen Q, She Y, Gao F, Xu Y, Chen J, Gao X. An
Interpretable Computer-Aided Diagnosis Method for Periodontitis from
Panoramic Radiographs. Front Physiol. 2021;12:55-66. |
|
|
|
13.
Revilla-León M, Gómez-Polo M, Vyas S, Barmak AB, Gallucci GO, Att W, Özcan M,
Krishnamurthy VR. Artificial intelligence models for tooth-supported fixed
and removable prosthodontics: A systematic review. J Prosthet Dent. 2023;129:276-292. |
|
|
|
14.
Mangano F, Mangano C, Margiani B, Admakin O. Combining Intraoral and Face
Scans for the Design and Fabrication of Computer-Assisted
Design/Computer-Assisted Manufacturing (CAD/CAM) Polyether-Ether-Ketone
(PEEK) Implant-Supported Bars for Maxillary Overdentures. Scanning. 2019;4(27):4-15. |
|
|
|
15.
Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated skeletal classification
with lateral cephalometry based on artificial intelligence. J Dent Res.
2020;99:249-256. |
|
|
|
16.
Soheilifar S, Ataei H, Mollabashi V, Amin P, Bakhshae A, Naghdi N. Extraction
versus non-extraction orthodontic treatment: Soft tissue profile changes in
borderline class I patients. Dent Med Probl. 2020;57:275-283. |
|
|
|
17.
Kang I, Njimbouom SN, Kim JD. Optimal Feature Selection‑Based Dental Caries
Prediction Model Using Machine Learning for Decision Support System.
Bioengineering. 2023;10:29-45. |
|
|
|
18.
Pandiar D, Choudhari S, Poothakulath Krishnan R. Application of InceptionV3,
SqueezeNet, and VGG16 Convoluted Neural Networks in the Image Classification
of Oral Squamous Cell Carcinoma: A Cross-Sectional Study. Cureus.
2023;15(11):49-108. |
|
|
|
19.
Demsar J, Zupan B, Leban G, Demšar TC, Zupan J, Leban B, Curk T. Orange: From
Experimental Machine Learning to Interactive Data Mining. In: Boulicaut, JF.,
Esposito, F., Giannotti, F., Pedreschi, D. (eds) Knowledge Discovery in
Databases: PKDD 2004. Lecture Notes in Computer Science(), vol 3202.
Springer, Berlin, Heidelberg. |
|
|
|
20.
Sadegh-Zadeh SA, Qeranqayeh R, Benkhalifa E, Dyke D, Taylor L, Bagheri M.
Dental Caries Risk Assessment in Children 5 Years Old and under via Machine
Learning. Dent J. 2022;10:164. |
|
|
|
21.
Tandon D, Rajawat J. Presente y futuro de la inteligencia artificial en
Odontología. J Oral Biol Craneofac Res. 2020;10:391-396. |
|
|
|
22.
Cacñahuaray-Martínez G, Gómez-Meza D, Lamas-Lara V, Guerrero ME. Aplicación
de la inteligencia artificial en Odontología: revisión de la literatura.
Odontol. Sanmarquina. 2021;24(3):243-254. |
|
|
|
23.
Pesaressi E, Villena RS, Frencken JE. Dental caries and oral health-related
quality of life of 3-year-olds living in Lima, Peru. Int J Paediatr Dent.
2020;30(1):57-65. |
|
|
|
24.
Nota de prensa. Menores deben usar pasta dental con flúor desde que aparece
el primer diente de leche.
https://www.gob.pe/institucion/minsa/noticias/13055-minsa-85-de-ninos-menores-de-11-anos-tiene-caries-dental-por-inadecuada-higiene-bucal |
|
|
|
25.
Falcon-Aguilar M. Asociación entre caries dental de madres y de sus hijos
menores de 72 meses en el centro de crecimiento y desarrollo - lactancia
materna Hospital Nacional Cayetano Heredia, Lima, Perú. Rev Estomatol
Herediana. 2021;31(1):17-27. |
|
|
|
26.
Díaz-Pizán ME. Calidad de vida relacionada a la salud bucal de niños
preescolares con caries de infancia temprana pre y postratamiento. 2018
[citado 2 de marzo de 2024]; Disponible en: https://repositorio.upch.edu.pe/handle/20.500.12866/3825 |
|
|
|
27.
Mei L, Shi H, Wei Z. Risk factors associated with early childhood caries
among Wenzhou preschool children in China: a prospective, observational
cohort study. BMJ Open. 2021;11:46-81. |
|
|
|
28.
Hung M, Voss MW, Rosales MN, Li W, Su W, Xu J, et al. Application of machine
learning for diagnostic prediction of root caries. Gerodontology.
2019;36(4):395-404. |
|
|
|
29.
Méndez F, Serrano-García J. Predicción de la enfermedad de caries en niños y
adolescentes utilizando modelos de aprendizaje automático. Màster en
Intel•ligència Artificial i Big Data en Salut. 2023;1-11. |
|
|
|
30.
Prasad R, Hussain MA, Sridharan K, Cosio-Borda RF, Geetha C. Support vector
machine and neural network for enhanced classification algorithm in
ecological data. Measurement: Sensors. 2023;27:10-23,100780. |
|
|
|
31.
Chen Y, Huang W, Nguyen LM, Weng TW. On the Equivalence between Neural
Network and Support Vector Machine- 35th Conference on Neural Information
Processing Systems. NeurIPS. 2021. https://openreview.net/pdf?id=npUxA--_nyX |