Blanco-Victorio DJ, López-Ramos RP, Blanco-Rodriguez JD, López-Luján NA, León-Untiveros GF, Siccha-Macassi AL. Early childhood caries (ECC) prediction models using Machine Learning. J Clin Exp Dent. 2024;16(12):e1523-29.

 

doi:10.4317/jced.61514

https://doi.org/10.4317/jced.61514

_____

 

References

1. Watt RG, Daly B, Allison P, Macpherson LMD, Venturelli R, Listl S. Ending the neglect of global oral health: Time for radical action. Lancet. 2019;394:261-272.
https://doi.org/10.1016/S0140-6736(19)31133-X
PMid:31327370

 

2. Chen X, Daliri EB, Kim N, Kim JR, Yoo D, Oh DH. Microbial Etiology and prevention of dental caries: Exploiting natural products to inhibit cariogenic biofilms. Pathogens. 2020;9:569.
https://doi.org/10.3390/pathogens9070569
PMid:32674310 PMCid:PMC7400585

 

3. Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res. 2020;99(7):769-774.
https://doi.org/10.1177/0022034520915714
PMid:32315260 PMCid:PMC7309354

 

4. Rodrigues JA, Krois J, Schwendicke F. Demystifying artificial intelligence and deep learning in dentistry. Braz Oral Res. 2021;13;35:10-19.
https://doi.org/10.1590/1807-3107bor-2021.vol35.0094
PMid:34406309

 

5. Suvarna B, Gajanan KB, Mukesh DP. A comprehensive survey of deep learning algorithms and applications in dental radiograph analysis. Healthcare Analytics. 2023;4(2):1-9.
https://doi.org/10.1016/j.health.2023.100282

 

6. Talpur S, Azim F, Rashid M, Syed SA, Talpur BA, Khan SJ. Uses of Different Machine Learning Algorithms for Diagnosis of Dental Caries. J Healthc Eng. 2022; 2022:32-43.
https://doi.org/10.1155/2022/5032435
PMid:35399834 PMCid:PMC8989613

 

7. Lee KS, Jung SK, Ryu JJ, Shin SW, Choi J. Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. J Clin Med. 2020;9(2):392.
https://doi.org/10.3390/jcm9020392
PMid:32024114 PMCid:PMC7074309

 

8. Surlari Z, Budal DG, Lupu CI, Stelea CG, Butnaru OM, Luchian I. Current Progress and Challenges of Using Artificial Intelligence in Clinical Dentistry-A Narrative Review. J Clin Med. 2023;12(4):73-78.
https://doi.org/10.3390/jcm12237378
PMid:38068430 PMCid:PMC10707023

 

9. Sivari E, Senirkentli GB, Bostanci E, Guzel MS. Acici K, Asuroglu T. Deep Learning in Diagnosis of Dental Anomalies and Diseases: A Systematic Review. Diagnostics. 2023:13(4):2-12.
https://doi.org/10.3390/diagnostics13040720
PMid:36832205 PMCid:PMC9954881

 

10. Lee CT, Kabir T, Nelson J, Sheng S, Meng HW, Van Dyke TE, et al. Use of the deep learning approach to measure alveolar bone level. J Clin Periodontol. 2022;49:260-269.
https://doi.org/10.1111/jcpe.13574
PMid:34879437 PMCid:PMC9026777

 

11. Radha RC, Raghavendra BS, Subhash BV, Rajan J, Narasimhadhan AV. Machine learning techniques for periodontitis and dental caries detection: A narrative review. International Journal of Medical Informatics. 2023:17(8):1-16.
https://doi.org/10.1016/j.ijmedinf.2023.105170
PMid:37595373

 

12. Li H, Zhou J, Zhou Y, Chen Q, She Y, Gao F, Xu Y, Chen J, Gao X. An Interpretable Computer-Aided Diagnosis Method for Periodontitis from Panoramic Radiographs. Front Physiol. 2021;12:55-66.
https://doi.org/10.3389/fphys.2021.655556
PMid:34239448 PMCid:PMC8258157

 

13. Revilla-León M, Gómez-Polo M, Vyas S, Barmak AB, Gallucci GO, Att W, Özcan M, Krishnamurthy VR. Artificial intelligence models for tooth-supported fixed and removable prosthodontics: A systematic review. J Prosthet Dent. 2023;129:276-292.
https://doi.org/10.1016/j.prosdent.2021.06.001
PMid:34281697

 

14. Mangano F, Mangano C, Margiani B, Admakin O. Combining Intraoral and Face Scans for the Design and Fabrication of Computer-Assisted Design/Computer-Assisted Manufacturing (CAD/CAM) Polyether-Ether-Ketone (PEEK) Implant-Supported Bars for Maxillary Overdentures. Scanning. 2019;4(27):4-15.
https://doi.org/10.1155/2019/4274715
PMid:31531155 PMCid:PMC6724437

 

15. Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res. 2020;99:249-256.
https://doi.org/10.1177/0022034520901715
PMid:31977286

 

16. Soheilifar S, Ataei H, Mollabashi V, Amin P, Bakhshae A, Naghdi N. Extraction versus non-extraction orthodontic treatment: Soft tissue profile changes in borderline class I patients. Dent Med Probl. 2020;57:275-283.
https://doi.org/10.17219/dmp/119102
PMid:33001593

 

17. Kang I, Njimbouom SN, Kim JD. Optimal Feature Selection‑Based Dental Caries Prediction Model Using Machine Learning for Decision Support System. Bioengineering. 2023;10:29-45.
https://doi.org/10.3390/bioengineering10020245
PMid:36829739 PMCid:PMC9952690

 

18. Pandiar D, Choudhari S, Poothakulath Krishnan R. Application of InceptionV3, SqueezeNet, and VGG16 Convoluted Neural Networks in the Image Classification of Oral Squamous Cell Carcinoma: A Cross-Sectional Study. Cureus. 2023;15(11):49-108.
https://doi.org/10.7759/cureus.49108

 

19. Demsar J, Zupan B, Leban G, Demšar TC, Zupan J, Leban B, Curk T. Orange: From Experimental Machine Learning to Interactive Data Mining. In: Boulicaut, JF., Esposito, F., Giannotti, F., Pedreschi, D. (eds) Knowledge Discovery in Databases: PKDD 2004. Lecture Notes in Computer Science(), vol 3202. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-30116-5_58

 

20. Sadegh-Zadeh SA, Qeranqayeh R, Benkhalifa E, Dyke D, Taylor L, Bagheri M. Dental Caries Risk Assessment in Children 5 Years Old and under via Machine Learning. Dent J. 2022;10:164.
https://doi.org/10.3390/dj10090164
PMid:36135159 PMCid:PMC9497737

 

21. Tandon D, Rajawat J. Presente y futuro de la inteligencia artificial en Odontología. J Oral Biol Craneofac Res. 2020;10:391-396.

 

22. Cacñahuaray-Martínez G, Gómez-Meza D, Lamas-Lara V, Guerrero ME. Aplicación de la inteligencia artificial en Odontología: revisión de la literatura. Odontol. Sanmarquina. 2021;24(3):243-254.
https://doi.org/10.15381/os.v24i3.20512

 

23. Pesaressi E, Villena RS, Frencken JE. Dental caries and oral health-related quality of life of 3-year-olds living in Lima, Peru. Int J Paediatr Dent. 2020;30(1):57-65.
https://doi.org/10.1111/ipd.12582
PMid:31594032

 

24. Nota de prensa. Menores deben usar pasta dental con flúor desde que aparece el primer diente de leche. https://www.gob.pe/institucion/minsa/noticias/13055-minsa-85-de-ninos-menores-de-11-anos-tiene-caries-dental-por-inadecuada-higiene-bucal

 

25. Falcon-Aguilar M. Asociación entre caries dental de madres y de sus hijos menores de 72 meses en el centro de crecimiento y desarrollo - lactancia materna Hospital Nacional Cayetano Heredia, Lima, Perú. Rev Estomatol Herediana. 2021;31(1):17-27.
https://doi.org/10.20453/reh.v31i1.3922

 

26. Díaz-Pizán ME. Calidad de vida relacionada a la salud bucal de niños preescolares con caries de infancia temprana pre y postratamiento. 2018 [citado 2 de marzo de 2024]; Disponible en: https://repositorio.upch.edu.pe/handle/20.500.12866/3825

 

27. Mei L, Shi H, Wei Z. Risk factors associated with early childhood caries among Wenzhou preschool children in China: a prospective, observational cohort study. BMJ Open. 2021;11:46-81.
https://doi.org/10.1136/bmjopen-2020-046816
PMid:34518250 PMCid:PMC8438756

 

28. Hung M, Voss MW, Rosales MN, Li W, Su W, Xu J, et al. Application of machine learning for diagnostic prediction of root caries. Gerodontology. 2019;36(4):395-404.
https://doi.org/10.1111/ger.12432
PMid:31274221 PMCid:PMC6874707

 

29. Méndez F, Serrano-García J. Predicción de la enfermedad de caries en niños y adolescentes utilizando modelos de aprendizaje automático. Màster en Intel•ligència Artificial i Big Data en Salut. 2023;1-11.

 

30. Prasad R, Hussain MA, Sridharan K, Cosio-Borda RF, Geetha C. Support vector machine and neural network for enhanced classification algorithm in ecological data. Measurement: Sensors. 2023;27:10-23,100780.
https://doi.org/10.1016/j.measen.2023.100780

 

31. Chen Y, Huang W, Nguyen LM, Weng TW. On the Equivalence between Neural Network and Support Vector Machine- 35th Conference on Neural Information Processing Systems. NeurIPS. 2021. https://openreview.net/pdf?id=npUxA--_nyX