Yadalam PK, Barbosa FT, Natarajan PM, Ardila CM. Graph Neural Networks-Based Prediction of Drug Gene Interactions of RTK-VEGF4 Receptor Family in Periodontal Regeneration. J Clin Exp Dent. 2024;16(12):e1454-8.

 

doi:10.4317/jced.61880

https://doi.org/10.4317/jced.61880

_____

 

References

1. Shinkaruk S, Bayle M, Laïn G, Déléris G. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr Med Chem Anticancer Agents. 2003;3:95-117.
https://doi.org/10.2174/1568011033353452
PMid:12678905

 

2. Jeltsch M, Leppänen VM, Saharinen P, Alitalo K. Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harb Perspect Biol. 2013;5:a009183
https://doi.org/10.1101/cshperspect.a009183
PMid:24003209 PMCid:PMC3753715

 

3. Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B. 2015;5:390-401.
https://doi.org/10.1016/j.apsb.2015.07.001
PMid:26579470 PMCid:PMC4629442

 

4. Vasconcelos RC, Costa A de LL, Freitas R de A, Bezerra BA do A, Santos BRM dos, Pinto LP, et al. Immunoexpression of HIF-1α and VEGF in Periodontal Disease and Healthy Gingival Tissues. Braz Dent J. 2016;27:117-22.
https://doi.org/10.1590/0103-6440201600533
PMid:27058371

 

5. Yanagita M, Kojima Y, Kubota M, Mori K, Yamashita M, Yamada S, et al. Cooperative effects of FGF-2 and VEGF-A in periodontal ligament cells. J Dent Res. 2014;93:89-95.
https://doi.org/10.1177/0022034513511640
PMid:24186558 PMCid:PMC3872850

 

6. Naruishi K, Nagata T. Biological effects of interleukin-6 on Gingival Fibroblasts: Cytokine regulation in periodontitis. J Cell Physiol. 2018;233:6393-400.
https://doi.org/10.1002/jcp.26521
PMid:29574949

 

7. Kajihara R, Sakai H, Han Y, Amari K, Kawamoto M, Hakoyama Y, et al. Presence of periodontitis may synergistically contribute to cancer progression via Treg and IL-6. Sci Rep. 2022;12:11584.
https://doi.org/10.1038/s41598-022-15690-w
PMid:35804048 PMCid:PMC9270385

 

8. Liu C, Hogan AM, Sturm H, Khan MW, Islam MM, Rahman ASMZ, et al. Deep learning-driven prediction of drug mechanism of action from large-scale chemical-genetic interaction profiles. J Cheminform. 2022;14:12.
https://doi.org/10.1186/s13321-022-00596-6
PMid:35279211 PMCid:PMC8917716

 

9. Cheng F, Zhao Z. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J Am Med Inform Assoc. 2014;21:e278-86.
https://doi.org/10.1136/amiajnl-2013-002512
PMid:24644270 PMCid:PMC4173180

 

10. Huang HC, Klein PS. The Frizzled family: receptors for multiple signal transduction pathways. Genome Biol. 2004;5:234.
https://doi.org/10.1186/gb-2004-5-7-234
PMid:15239825 PMCid:PMC463283

 

11. Jang HY, Song J, Kim JH, Lee H, Kim IW, Moon B, et al. Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information. NPJ Digit Med. 2022;5:88.
https://doi.org/10.1038/s41746-022-00639-0
PMid:35817846 PMCid:PMC9273620

 

12. Yadalam PK, Natarajan PM, Mosaddad SA, Heboyan A. Graph neural networks-based prediction of drug gene association of P2X receptors in periodontal pain. J Oral Biol Craniofac Res. 2024;14:335-8.
https://doi.org/10.1016/j.jobcr.2024.04.008
PMid:38680473 PMCid:PMC11053325

 

13. Skuta C, Popr M, Muller T, Jindrich J, Kahle M, Sedlak D, et al. Probes & Drugs portal: an interactive, open data resource for chemical biology. Nat Methods. 2017;14:759-60.
https://doi.org/10.1038/nmeth.4365
PMid:28753599

 

14. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498-504.
https://doi.org/10.1101/gr.1239303
PMid:14597658 PMCid:PMC403769

 

15. Cheng Z, Xu D, Ding D, Ding Y. Prediction of Drug-Target Interactions with High-Quality Negative Samples and A Network-Based Deep Learning Framework. IEEE J Biomed Health Inform. 2024;16:PP.
https://doi.org/10.1109/JBHI.2024.3354953
PMid:38227407

 

16. Hu Y, Zhang X, Zhang J, Xia X, Li H, Qiu C, et al. Activated STAT3 signaling pathway by ligature-induced periodontitis could contribute to neuroinflammation and cognitive impairment in rats. J Neuroinflammation. 2021;18(1):80.
https://doi.org/10.1186/s12974-021-02071-9
PMid:33757547 PMCid:PMC7986277

 

17. Afacan B, Öztürk VÖ, Paşalı Ç, Bozkurt E, Köse T, Emingil G. Gingival crevicular fluid and salivary HIF-1α, VEGF, and TNF-α levels in periodontal health and disease. J Periodontol. 2019;90:788-97.
https://doi.org/10.1002/JPER.18-0412
PMid:30536725

 

18. Saghaleyni R, Sheikh Muhammad A, Bangalore P, Nielsen J, Robinson JL. Machine learning-based investigation of the cancer protein secretory pathway. PLOS Comput Biol. 2021;17:e1008898.
https://doi.org/10.1371/journal.pcbi.1008898
PMid:33819271 PMCid:PMC8049480

 

19. Espadaler J, Romero-Isart O, Jackson RM, Oliva B. Prediction of protein-protein interactions using distant conservation of sequence patterns and structure relationships. Bioinformatics. 2005;21:3360-8.
https://doi.org/10.1093/bioinformatics/bti522
PMid:15961445

 

20. Yang A, Jude KM, Lai B, Minot M, Kocyla AM, Glassman CR, et al. Deploying synthetic coevolution and machine learning to engineer protein-protein interactions. Science. 2023;381(6656):eadh1720.
https://doi.org/10.1126/science.adh1720
PMid:37499032 PMCid:PMC10403280

 

21. Fan Y, Zhang C, Hu X, Huang Z, Xue J, Deng L. SGCLDGA: unveiling drug-gene associations through simple graph contrastive learning. Brief Bioinform. 2024;25:bbae231.
https://doi.org/10.1093/bib/bbae231
PMid:38754409 PMCid:PMC11097980