Yadalam PK,
Barbosa FT, Natarajan PM, Ardila CM. Graph Neural Networks-Based Prediction of
Drug Gene Interactions of RTK-VEGF4 Receptor Family in Periodontal
Regeneration. J Clin Exp Dent. 2024;16(12):e1454-8.
doi:10.4317/jced.61880
https://doi.org/10.4317/jced.61880
_____
References
1.
Shinkaruk S, Bayle M, Laïn G, Déléris G. Vascular endothelial cell growth
factor (VEGF), an emerging target for cancer chemotherapy. Curr Med Chem
Anticancer Agents. 2003;3:95-117. |
|
|
|
2.
Jeltsch M, Leppänen VM, Saharinen P, Alitalo K. Receptor tyrosine
kinase-mediated angiogenesis. Cold Spring Harb Perspect Biol. 2013;5:a009183 |
|
|
|
3.
Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors.
Acta Pharm Sin B. 2015;5:390-401. |
|
|
|
4.
Vasconcelos RC, Costa A de LL, Freitas R de A, Bezerra BA do A, Santos BRM
dos, Pinto LP, et al. Immunoexpression of HIF-1α and VEGF in Periodontal
Disease and Healthy Gingival Tissues. Braz Dent J. 2016;27:117-22. |
|
|
|
5.
Yanagita M, Kojima Y, Kubota M, Mori K, Yamashita M, Yamada S, et al.
Cooperative effects of FGF-2 and VEGF-A in periodontal ligament cells. J Dent
Res. 2014;93:89-95. |
|
|
|
6.
Naruishi K, Nagata T. Biological effects of interleukin-6 on Gingival
Fibroblasts: Cytokine regulation in periodontitis. J Cell Physiol.
2018;233:6393-400. |
|
|
|
7.
Kajihara R, Sakai H, Han Y, Amari K, Kawamoto M, Hakoyama Y, et al. Presence
of periodontitis may synergistically contribute to cancer progression via
Treg and IL-6. Sci Rep. 2022;12:11584. |
|
|
|
8.
Liu C, Hogan AM, Sturm H, Khan MW, Islam MM, Rahman ASMZ, et al. Deep
learning-driven prediction of drug mechanism of action from large-scale
chemical-genetic interaction profiles. J Cheminform. 2022;14:12. |
|
|
|
9.
Cheng F, Zhao Z. Machine learning-based prediction of drug-drug interactions
by integrating drug phenotypic, therapeutic, chemical, and genomic
properties. J Am Med Inform Assoc. 2014;21:e278-86. |
|
|
|
10.
Huang HC, Klein PS. The Frizzled family: receptors for multiple signal
transduction pathways. Genome Biol. 2004;5:234. |
|
|
|
11.
Jang HY, Song J, Kim JH, Lee H, Kim IW, Moon B, et al. Machine learning-based
quantitative prediction of drug exposure in drug-drug interactions using drug
label information. NPJ Digit Med. 2022;5:88. |
|
|
|
12.
Yadalam PK, Natarajan PM, Mosaddad SA, Heboyan A. Graph neural networks-based
prediction of drug gene association of P2X receptors in periodontal pain. J
Oral Biol Craniofac Res. 2024;14:335-8. |
|
|
|
13.
Skuta C, Popr M, Muller T, Jindrich J, Kahle M, Sedlak D, et al. Probes &
Drugs portal: an interactive, open data resource for chemical biology. Nat
Methods. 2017;14:759-60. |
|
|
|
14.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.
Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res. 2003;13:2498-504. |
|
|
|
15.
Cheng Z, Xu D, Ding D, Ding Y. Prediction of Drug-Target Interactions with
High-Quality Negative Samples and A Network-Based Deep Learning Framework.
IEEE J Biomed Health Inform. 2024;16:PP. |
|
|
|
16.
Hu Y, Zhang X, Zhang J, Xia X, Li H, Qiu C, et al. Activated STAT3 signaling
pathway by ligature-induced periodontitis could contribute to
neuroinflammation and cognitive impairment in rats. J Neuroinflammation.
2021;18(1):80. |
|
|
|
17.
Afacan B, Öztürk VÖ, Paşalı Ç, Bozkurt E, Köse T, Emingil G. Gingival
crevicular fluid and salivary HIF-1α, VEGF, and TNF-α levels in periodontal
health and disease. J Periodontol. 2019;90:788-97. |
|
|
|
18.
Saghaleyni R, Sheikh Muhammad A, Bangalore P, Nielsen J, Robinson JL. Machine
learning-based investigation of the cancer protein secretory pathway. PLOS
Comput Biol. 2021;17:e1008898. |
|
|
|
19.
Espadaler J, Romero-Isart O, Jackson RM, Oliva B. Prediction of
protein-protein interactions using distant conservation of sequence patterns
and structure relationships. Bioinformatics. 2005;21:3360-8. |
|
|
|
20.
Yang A, Jude KM, Lai B, Minot M, Kocyla AM, Glassman CR, et al. Deploying
synthetic coevolution and machine learning to engineer protein-protein
interactions. Science. 2023;381(6656):eadh1720. |
|
|
|
21.
Fan Y, Zhang C, Hu X, Huang Z, Xue J, Deng L. SGCLDGA: unveiling drug-gene
associations through simple graph contrastive learning. Brief Bioinform.
2024;25:bbae231. |