Ersöz B, Aydın N, Ezmek B, Karaoğlanoğlu S, Çal IK. Effect of Surface Treatments Applied to 3D Printed Permanent Resins on Shear Bond Strength. J Clin Exp Dent. 2024;16(9):e1059-66.

 

doi:10.4317/jced.61884

https://doi.org/10.4317/jced.61884

_____

 

References

1. Revilla-León M, Meyers MJ, Zandinejad A, Özcan M. A review on chemical composition, mechanical properties, and manufacturing workflow of additively manufactured current polymers for interim dentalrestorations. J Esthet Restor Dent. 2019;31:51-57.
https://doi.org/10.1111/jerd.12438
PMid:30367716

 

2. Tigmeanu CV, Ardelean LC, Rusu LC, Negrutiu ML. Additive manufactured polymers in dentistry, current state-of-the-art and future perspectives-A review. Polymers (Basel). 2022;14:3658.
https://doi.org/10.3390/polym14173658
PMid:36080732 PMCid:PMC9460687

 

3. Revilla-León M, Özcan M. Additive manufacturing technologies usedfor processing polymers: current status and potential application inprosthetic dentistry. J Prosthodont. J Prosthodont. 2019;28:146-158.
https://doi.org/10.1111/jopr.12801
PMid:29682823

 

4. Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32:54-64.
https://doi.org/10.1016/j.dental.2015.09.018
PMid:26494268

 

5. Atria PJ, Bordin D, Marti F, Nayak VV, Conejo J, Benalcázar Jalkh E, Witek L, Sampaio CS. 3D-printed resins for provisional dental restorations: Comparison of mechanical and biological properties. J Esthet Restor Dent. 2022;34:804-815.
https://doi.org/10.1111/jerd.12888
PMid:35187786

 

6. Groth C, Kravitz ND, Jones PE, Graham JW, Redmond WR. Three-dimensional printing technology. J Clin Orthod. 2014;48:475-85.

 

7. Salmi M. Possibilities of preoperative medical models made by 3D printing or additive manufacturing. J Med Eng. J Med Eng. 2016;2016:6191526.
https://doi.org/10.1155/2016/6191526
PMid:27433470 PMCid:PMC4940539

 

8. Paradowska-Stolarz A, Malysa A, Mikulewicz M. Comparison of the compression and tensile modulus of two chosen resins used in dentistry for 3D printing. Materials. 2022;15:8956.
https://doi.org/10.3390/ma15248956
PMid:36556761 PMCid:PMC9783505

 

9. Reymus M, Fabritius R, Keßler A, Hickel R, Edelhoff D, Stawarczyk B. Fracture load of 3D-printed fixed dental prostheses compared with milled and conventionally fabricated ones: The impact of resin material, build direction, post-curing, and artificial aging-an in vitro study. Clin Oral Investig. 2020;24:701-710.
https://doi.org/10.1007/s00784-019-02952-7
PMid:31127429

 

10. Cekic-Nagas I, Ergun G, Egilmez F, Vallittu PK, Lassila LV. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials. J Prosthodont Res. 2016;60:265-273.
https://doi.org/10.1016/j.jpor.2016.02.003
PMid:26973053

 

11. Lise DP, Van Ende A, De Munck J, Vieira L, Baratieri LN, Van Meerbeek B. Microtensile bond strength of composite cement to novel CAD/CAM materials as a function of surface treatment and aging. Oper Dent. 2017;42:73-81.
https://doi.org/10.2341/15-263-L
PMid:27689770

 

12. Elsaka SE. Bond strength of novel CAD/CAM restorative materials to selfadhesive resin cement: the effect of surface treatments. J Adhes Dent. 2014;16:531-40.

 

13. Spitznagel FA, Horvath SD, Guess PC, Blatz MB. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature J Esthet Restor Dent. 2014;26:382-93.
https://doi.org/10.1111/jerd.12100
PMid:24754327

 

14. Sko'skiewicz-Malinowska K, Mysior M, Rusak A, Kuropka P, Kozakiewicz M, Jurczyszyn K. Application of texture and fractal dimension analysis to evaluate subgingival cement surfaces in terms of biocompatibility. Materials. 2021;14:5857.
https://doi.org/10.3390/ma14195857
PMid:34640254 PMCid:PMC8510438

 

15. Burke FJT, Hussain A, Nolan L, Fleming GJP. Methods used in dentine bonding tests: an analysis of 102 investigations on bond strength. Eur J Prosthodont Rest Dent. 2008;16:158-65.

 

16. Braga RR, Meira JBC, Boaro LCC, Xavier TA. Adhesion to tooth structure: A critical review of "macro" test methods. Dent Mater. 2010;26:38-49.
https://doi.org/10.1016/j.dental.2009.11.150
PMid:20004960

 

17. Lankes V, Reymus M, Liebermann A, Stawarczyk B. Bond strength between temporary 3D printable resin and conventional resin composite: influence of cleaning methods and air-abrasion parameters. Clin Oral Investig. 2023;27:31-43.
https://doi.org/10.1007/s00784-022-04800-7
PMid:36441267 PMCid:PMC9877060

 

18. Kim D, Shim JS, Lee D, Shin SH, Nam NE, Park KH, Shim JS, Kim JE. Effects of post-curing time on the mechanical and color properties of three-dimensional printed crown and bridge materials. Polymers (Basel). 2020;12:2762.
https://doi.org/10.3390/polym12112762
PMid:33238528 PMCid:PMC7700600

 

19. International Organization for Standardization. ISO 29022-2013(en). Dentistry-adhesion-notched-edge shear bond strength test. Geneva; 2013. Available online https://www.iso.org/obp/ui/en/#iso:std:iso:29022:ed-1:v1:en. Accessed 15 May 2024.

 

20. Andermatt L, Özcan M. Micro-shear bond strength of resin composite cement to coronal enamel/dentin, cervical enamel, cementoenamel junction and root cementum with different adhesive systems. J Adhes Sci Tech. 2021;35:2079-2093.
https://doi.org/10.1080/01694243.2021.1872195

 

21. Park SJ, Lee JS. Effect of surface treatment on shear bond strength of relining material and 3D-printed denture base. J Adv Prosthodont. 2022;14:262-272.
https://doi.org/10.4047/jap.2022.14.4.262
PMid:36105879 PMCid:PMC9444486

 

22. Mello CC, Bitencourt SB, dos Santos DM, Pesqueira AA, Pellizzer EP, Goiato M. The effect of surface treatment on shear bond strength between Y-TZP and veneer ceramic: A systematic review and metaanalysis. J Prosthodont. 2018;27:624-635.
https://doi.org/10.1111/jopr.12727
PMid:29235205

 

23. Park JH, Choi YS. Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics. J Adv Prosthodont. 2016;8:275-84.
https://doi.org/10.4047/jap.2016.8.4.275
PMid:27555896 PMCid:PMC4993840

 

24. Fonseca R, Haneda I, Almeida-Júnior A, Abi-Rached F, Adabo G. Efficacy of air-abrasion technique and additional surface treatment at titanium/resin cement interface. J Adhes Dent. 2012;14:453-9.

 

25. Ali A, Takagaki T, Nikaido T, Abdou A, & Tagami J. Influence of ambient air and different surface treatments on the bonding performance of a CAD/CAM composite block. J Adhes Dent. 2018;20:317-324.

 

26. Soares CJ, Soares PV, Pereira JC, Fonseca RB. Surface treatment protocols in the cementation process of ceramic and laboratoryprocessed composite restorations: a literature review. J Esthet Restor Dent. 2005;17:224-35.
https://doi.org/10.1111/j.1708-8240.2005.tb00119.x
PMid:16231493

 

27. Abdou A, Takagaki T, Alghamdi A, Tichy A, Nikaido T, Tagami J. Bonding performance of dispersed filler resin composite CAD/CAM blocks with different surface treatment protocols. Dent Mater J. 2021;40:209-219.
https://doi.org/10.4012/dmj.2020-049
PMid:33162457

 

28. Yanardag E, Yilmaz S, Karakaya E, Ongun S. Effect of differentsurface treatment methods on micro-shear bond strength of CAD-CAM restorative materials to resin cement. J Adhes Sci Tech. 2018;33:110-123.
https://doi.org/10.1080/01694243.2018.1514992

 

29. Nagasawa Y, Hibino Y, Eda Y, Nakajima H. Effect of surface treatment of CAD/CAM resin composites on the shear bond strength of self-adhesive resin cement. Dent Mater J. 2021;40:364-378.
https://doi.org/10.4012/dmj.2019-431
PMid:33100298

 

30. Hagino R, Mine A, Matsumoto M, Yumitate M, Ban S, Yamanaka A, Ishida M, Miura J, Meerbeek BV, Yatani H. Combination of a silane coupling agent and resin primer reinforces bonding effectiveness to a CAD/CAM indirect resin composite block. Dent Mater J. 2021;40:1445-1452.
https://doi.org/10.4012/dmj.2021-083
PMid:34602585

 

31. Lung CYK, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater. 2012;28:467-77.
https://doi.org/10.1016/j.dental.2012.02.009
PMid:22425571

 

32. Rosa WL, Piva E, Silva AF. Bond strength of universal adhesives: a systematic review and meta-analysis. J Dent. 2015;43:765-76.
https://doi.org/10.1016/j.jdent.2015.04.003
PMid:25882585

 

33. Cuevas-Suárez CE, da Rosa WLO, Lund RG, da Silva AF, Piva E. Bonding performance of universal adhesives: an updated systematic review and meta-analysis. J Adhes Dent. 2019;21:7-26.

 

34. Loomans BAC, Cardoso MV, Opdam NJ, Roeters FJ, De Munck J, Huysmans MC, Van Meerbeek B. Surface roughness of etched composite resin in light of composite repair. J Dent. 2011;39:499-505.
https://doi.org/10.1016/j.jdent.2011.04.007
PMid:21571031

 

35. Miyazaki M, Hinoura K, Onose H, Moore BK. Effect of filler content of light-cured composites on bond strength to bovine dentine. J Dent. 1991;19:301-3.
https://doi.org/10.1016/0300-5712(91)90078-D
PMid:1806597

 

36. Mangoush E, Lassila L, Vallittu PK, Garoushi S. Shear-bond strength and optical properties of short fiber-reinforced CAD/CAM composite blocks. Eur J Oral Sci. 2021;129:e12815.
https://doi.org/10.1111/eos.12815
PMid:34322917

 

37. Bagheri A, & Jin J. Photopolymerization in 3D printing. ACS Appl Polym Mater. 2019;1:593-611.
https://doi.org/10.1021/acsapm.8b00165

 

38. Piedra-Cascón W, Krishnamurthy VR, Att W, Revilla-León M. 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. J Dent. 2021;109:103630.
https://doi.org/10.1016/j.jdent.2021.103630
PMid:33684463

 

39. Reymus M, Lümkemann N, Stawarczyk B. 3D-printed material for temporary restorations: impact of print layer thickness and post-curing method on degree of conversion. Int J Comput Dent. 2019;22:231-237.

 

40. Tanaka A, Kawaguchi T, Ito A, Isshi K, Hamanaka I, Tsuzuki T. Shear bond strength of ultraviolet-polymerized resin to 3D-printed denture materials: Effects of post-polymerization, surface treatments, and thermocycling. J Prosthodont Res. 2024 Apr 19.
https://doi.org/10.2186/jpr.JPR_D_23_00321
PMid:38644230