Uasuwan P,
Juntavee N, Juntavee A. Effect of glass infiltration and modified cooling rates
on color characteristics alteration of monochrome and multilayer high yttrium
oxide containing zirconia. J Clin Exp Dent. 2024;16(9):e1079-91.
doi:10.4317/jced.62066
https://doi.org/10.4317/jced.62066
_____
References
1.
Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent
Res. 2014;93(12):1235-42. |
|
|
|
2.
Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical
review of the relevant aspects in dentistry. Dent Mater. 2010;26(8):807-20. |
|
|
|
3.
Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three
generations of zirconia: From veneered to monolithic. Part I. Quintessence
Int. 2017;48(5):369-80. PMid:28396886 |
|
|
|
4.
Kulyk V, Duriagina Z, Kostryzhev A, Vasyliv B, Vavrukh V, Marenych O. The
effect of yttria content on microstructure, strength, and fracture behavior
of yttria-stabilized zirconia. Materials (Basel). 2022;15(15):5212. |
|
|
|
5.
Kolakarnprasert N, Kaizer MR, Kim DK, Zhang Y. New multi-layered zirconias:
Composition, microstructure and translucency. Dent Mater. 2019;35(5):797-806. |
|
|
|
6.
Alves M, Abreu L, Klippel G, Santos C, Strecker K. Mechanical properties and
translucency of a multi-layered zirconia with color gradient for dental
applications. Ceram Int. 2021;47(1): 301-9. |
|
|
|
7.
Shah K, Holloway JA, Denry IL. Effect of coloring with various metal oxides
on the microstructure, color, and flexural strength of 3Y-TZP. J Biomed Mater
Res B Appl Biomater. 2008;87(2):329-37. |
|
|
|
8.
Yu NK, Park MG. Effect of different coloring liquids on the flexural strength
of multilayered zirconia. J Adv Prosthodont. 2019;11(4):209-14. |
|
|
|
9.
Yan J, Kaizer MR, Zhang Y. Load-bearing capacity of lithium disilicate and
ultra-translucent zirconias. Journal of the Mechanical Behavior of Biomedical
Materials. 2018;88:170-5. |
|
|
|
10.
Juntavee N, Attashu S. Effect of sintering process on color parameters of
nano-sized yttria partially stabilized tetragonal monolithic zirconia. J Clin
Exp Dent. 2018;10(8):e794-e804. |
|
|
|
11.
Bona A, Nogeueira A, Pecho O. Optical properties of CAD-CAM ceramic systems.
J Dent. 2014;42(9):1202-9. |
|
|
|
12.
Cho MS, Yu B, Lee YK. Opalescence of all-ceramic core and veneer materials.
Dent Mater. 2009;25(6):695-702. |
|
|
|
13.
Lee YK, Yu B. Measurement of opalescence of tooth enamel. J Dent.
2007;35(8):690-4. |
|
|
|
14.
Douglas RD, Steinhauer TJ, Wee AG. Intraoral determination of the tolerance
of dentists for perceptibility and acceptability of shade mismatch. J
Prosthet Dent. 2007;97(4):200-8. |
|
|
|
15.
Zhang Y, Kim JW. Graded structures for damage resistant and aesthetic
all-ceramic restorations. Dent Mater. 2009;25(6):781-90. |
|
|
|
16.
Mao L, Kaizer MR, Zhao M, Guo B, Song YF, Zhang Y. Graded ultra-translucent
zirconia (5Y-PSZ) for strength and functionalities. J Dent Res.
2018;97(11):1222-8. |
|
|
|
17.
Jitcharoen J, Padture N, Giannakopoulos A, Suresh S. Hertzian-crack
suppression in ceramics with elastic-modulus-graded surfaces. J Am Ceram Soc.
2005;81:2301-8. |
|
|
|
18.
Zhang Y, Chai H, Lee JJ, Lawn BR. Chipping resistance of graded zirconia
ceramics for dental crowns. J Dent Res. 2012;91(3):311-5. |
|
|
|
19.
Volpato CAM, Carvalho Ó SN, Pereira M, Correia Pereira da Silva FS.
Evaluation of the color and translucency of glass-infiltrated zirconia based
on the concept of functionally graded materials. J Prosthet Dent.
2019;121(3):547.e1-7. |
|
|
|
20.
Ren L, Janal M, Zhang Y. Sliding contact fatigue of graded zirconia with
external esthetic glass. J Dent Res. 2011;90(9):1116-21. |
|
|
|
21.
Ersoy NM, Aydoğdu HM, Değirmenci B, Çökük N, Sevimay M. The effects of
sintering temperature and duration on the flexural strength and grain size of
zirconia. Acta Biomater Odontol Scand. 2015;1(2-4):43-50. |
|
|
|
22.
Kim HK. Effect of a rapid-cooling protocol on the optical and mechanical
properties of dental monolithic zirconia containing 3-5 mol% Y2O3. Materials
(Basel). 2020;13(8):1923. |
|
|
|
23.
Juntavee N, Uasuwan P. Influence of thermal tempering processes on color
characteristics of different monolithic computer-assisted design and
computer-assisted manufacturing ceramic materials. J Clin Exp Dent.
2019;11(7):e614-24. |
|
|
|
24.
Juntavee N, Uasuwan P. Flexural strength of different monolithic
computer-assisted design and computer-assisted manufacturing ceramic
materials upon different thermal tempering processes. Eur J Dent.
2020;14(4):566-74. |
|
|
|
25.
Sailer I, Holderegger C, Jung RE, Suter A, Thievent B, Pietrobon N, et al.
Clinical study of the color stability of veneering ceramics for zirconia
frameworks. Int J Prosthodont. 2007;20(3):263-9. PMid:17580458 |
|
|
|
26.
Shirani M, Savabi O, Mosharraf R, Akhavankhaleghi M, Hebibkhodaei M, Isler S.
Comparison of translucency and opalescence among different dental monolithic
ceramics. J Prosthet Dent. 2021;126(3):446.e1-6. |
|
|
|
27.
Cho MH, Seol HJ. Optical properties, microstructure, and phase fraction of
multi-layered monolithic zirconia with and without yttria-gradient. Materials
(Basel). 2022;16(1):41. |
|
|
|
28.
Pekkan G, Pekkan K, Bayindir B, Özcan M, Karasu B. Factors affecting the
translucency of monolithic zirconia ceramics: A review from a materials
science perspective. Dent Mater J. 2020;39(1):1-8. |
|
|
|
29.
Vichi A, Sedda M, Fabian Fonzar R, Carrabba M, Ferrari M. Comparison of
contrast ratio, translucency parameter, and flexural strength of traditional
and "augmented translucency" zirconia for CEREC CAD/CAM system. J
Esthet Restor Dent. 2016;28 Suppl 1:S32-39. |
|
|
|
30.
Gibson IR, Irvine JTS. Qualitative X-ray diffraction analysis of metastable
tetragonal (t′) zirconia. J Am Ceram Soc. 2001;84(3):615-8. |
|
|
|
1. Denry I, Kelly JR.
Emerging ceramic-based materials for dentistry. J Dent Res.
2014;93(12):1235-42. |
|
|
|
2.
Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical
review of the relevant aspects in dentistry. Dent Mater. 2010;26(8):807-20. |
|
|
|
3.
Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three
generations of zirconia: From veneered to monolithic. Part I. Quintessence
Int. 2017;48(5):369-80. PMid:28396886 |
|
|
|
4.
Kulyk V, Duriagina Z, Kostryzhev A, Vasyliv B, Vavrukh V, Marenych O. The
effect of yttria content on microstructure, strength, and fracture behavior
of yttria-stabilized zirconia. Materials (Basel). 2022;15(15):5212. |
|
|
|
5.
Kolakarnprasert N, Kaizer MR, Kim DK, Zhang Y. New multi-layered zirconias:
Composition, microstructure and translucency. Dent Mater. 2019;35(5):797-806. |
|
|
|
6.
Alves M, Abreu L, Klippel G, Santos C, Strecker K. Mechanical properties and
translucency of a multi-layered zirconia with color gradient for dental
applications. Ceram Int. 2021;47(1): 301-9. |
|
|
|
7.
Shah K, Holloway JA, Denry IL. Effect of coloring with various metal oxides
on the microstructure, color, and flexural strength of 3Y-TZP. J Biomed Mater
Res B Appl Biomater. 2008;87(2):329-37. |
|
|
|
8.
Yu NK, Park MG. Effect of different coloring liquids on the flexural strength
of multilayered zirconia. J Adv Prosthodont. 2019;11(4):209-14. |
|
|
|
9.
Yan J, Kaizer MR, Zhang Y. Load-bearing capacity of lithium disilicate and
ultra-translucent zirconias. Journal of the Mechanical Behavior of Biomedical
Materials. 2018;88:170-5. |
|
|
|
10.
Juntavee N, Attashu S. Effect of sintering process on color parameters of
nano-sized yttria partially stabilized tetragonal monolithic zirconia. J Clin
Exp Dent. 2018;10(8):e794-e804. |
|
|
|
11.
Bona A, Nogeueira A, Pecho O. Optical properties of CAD-CAM ceramic systems.
J Dent. 2014;42(9):1202-9. |
|
|
|
12.
Cho MS, Yu B, Lee YK. Opalescence of all-ceramic core and veneer materials.
Dent Mater. 2009;25(6):695-702. |
|
|
|
13.
Lee YK, Yu B. Measurement of opalescence of tooth enamel. J Dent.
2007;35(8):690-4. |
|
|
|
14.
Douglas RD, Steinhauer TJ, Wee AG. Intraoral determination of the tolerance
of dentists for perceptibility and acceptability of shade mismatch. J
Prosthet Dent. 2007;97(4):200-8. |
|
|
|
15.
Zhang Y, Kim JW. Graded structures for damage resistant and aesthetic
all-ceramic restorations. Dent Mater. 2009;25(6):781-90. |
|
|
|
16.
Mao L, Kaizer MR, Zhao M, Guo B, Song YF, Zhang Y. Graded ultra-translucent
zirconia (5Y-PSZ) for strength and functionalities. J Dent Res.
2018;97(11):1222-8. |
|
|
|
17.
Jitcharoen J, Padture N, Giannakopoulos A, Suresh S. Hertzian-crack
suppression in ceramics with elastic-modulus-graded surfaces. J Am Ceram Soc.
2005;81:2301-8. |
|
|
|
18.
Zhang Y, Chai H, Lee JJ, Lawn BR. Chipping resistance of graded zirconia
ceramics for dental crowns. J Dent Res. 2012;91(3):311-5. |
|
|
|
19.
Volpato CAM, Carvalho Ó SN, Pereira M, Correia Pereira da Silva FS.
Evaluation of the color and translucency of glass-infiltrated zirconia based
on the concept of functionally graded materials. J Prosthet Dent.
2019;121(3):547.e1-7. |
|
|
|
20.
Ren L, Janal M, Zhang Y. Sliding contact fatigue of graded zirconia with
external esthetic glass. J Dent Res. 2011;90(9):1116-21. |
|
|
|
21.
Ersoy NM, Aydoğdu HM, Değirmenci B, Çökük N, Sevimay M. The effects of
sintering temperature and duration on the flexural strength and grain size of
zirconia. Acta Biomater Odontol Scand. 2015;1(2-4):43-50. |
|
|
|
22.
Kim HK. Effect of a rapid-cooling protocol on the optical and mechanical
properties of dental monolithic zirconia containing 3-5 mol% Y2O3. Materials
(Basel). 2020;13(8):1923. |
|
|
|
23.
Juntavee N, Uasuwan P. Influence of thermal tempering processes on color
characteristics of different monolithic computer-assisted design and
computer-assisted manufacturing ceramic materials. J Clin Exp Dent.
2019;11(7):e614-24. |
|
|
|
24.
Juntavee N, Uasuwan P. Flexural strength of different monolithic
computer-assisted design and computer-assisted manufacturing ceramic
materials upon different thermal tempering processes. Eur J Dent.
2020;14(4):566-74. |
|
|
|
25.
Sailer I, Holderegger C, Jung RE, Suter A, Thievent B, Pietrobon N, et al.
Clinical study of the color stability of veneering ceramics for zirconia
frameworks. Int J Prosthodont. 2007;20(3):263-9. PMid:17580458 |
|
|
|
26.
Shirani M, Savabi O, Mosharraf R, Akhavankhaleghi M, Hebibkhodaei M, Isler S.
Comparison of translucency and opalescence among different dental monolithic
ceramics. J Prosthet Dent. 2021;126(3):446.e1-6. |
|
|
|
27.
Cho MH, Seol HJ. Optical properties, microstructure, and phase fraction of
multi-layered monolithic zirconia with and without yttria-gradient. Materials
(Basel). 2022;16(1):41. |
|
|
|
28.
Pekkan G, Pekkan K, Bayindir B, Özcan M, Karasu B. Factors affecting the
translucency of monolithic zirconia ceramics: A review from a materials
science perspective. Dent Mater J. 2020;39(1):1-8. |
|
|
|
29.
Vichi A, Sedda M, Fabian Fonzar R, Carrabba M, Ferrari M. Comparison of
contrast ratio, translucency parameter, and flexural strength of traditional
and "augmented translucency" zirconia for CEREC CAD/CAM system. J
Esthet Restor Dent. 2016;28 Suppl 1:S32-39. |
|
|
|
30.
Gibson IR, Irvine JTS. Qualitative X-ray diffraction analysis of metastable
tetragonal (t′) zirconia. J Am Ceram Soc. 2001;84(3):615-8. |
|
|