Aliyyu WC, Riva FA, A SMP, Dwiandhono I, Satrio R, Sari DNI. Nano-Hydroxyapatite toothpaste of rice field snail shell combined with basil leaf extract as a remineralizing and antibacterial agent to prevent dental caries. J Clin Exp Dent. 2024;16(11):e1323-31.

 

doi:10.4317/jced.62073

https://doi.org/10.4317/jced.62073

_____

 

References

1. XF, Zi H, Zeng XJ. Changes in the global burden of untreated dental caries from 1990 to 2019: A systematic analysis for the Global Burden of Disease study. Heliyon. 2022;8(9):e10714.
https://doi.org/10.1016/j.heliyon.2022.e10714

PMid:36193522 PMCid:PMC9526157

 

2. Roberts WE, Mangum JE, Schneider PM. Pathophysiology of demineralization, part ii: enamel white spots, cavitated caries, and bone infection. Curr Osteoporos Rep. 2022;20(1):106-119.
https://doi.org/10.1007/s11914-022-00723-0

PMid:35156182 PMCid:PMC8930953

 

3. Nascimento MM. Approaches to modulate biofilm ecology. Dent Clin North Am. 2019;63(4):581-594.
https://doi.org/10.1016/j.cden.2019.07.002

PMid:31470914 PMCid:PMC6980328

 

4. Unterbrink P, Schulze ZWE, Meyer F, Fandrich P, Amaechi BT, Enax J. Prevention of dental caries: a review on the improvements of toothpaste formulations from 1900 to 2023. Dent J (Basel). 2024;12(3):64.
https://doi.org/10.3390/dj12030064

PMid:38534288 PMCid:PMC10969581

 

5. Philip N. State of the art enamel remineralization systems: the next frontier in caries management. Caries Res. 2019;53(3):284-295.
https://doi.org/10.1159/000493031

PMid:30296788 PMCid:PMC6518861

 

6. Guth S, Hüser S, Roth A, Degen G, Diel P, Edlund K, et al. Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Arch Toxicol. 2020;94:1375-1415.
https://doi.org/10.1007/s00204-020-02725-2

PMid:32382957 PMCid:PMC7261729

 

7. Imran E, Cooper PR, Ratnayake J, Ekambaram M, Mei ML. Potential beneficial effects of hydroxyapatite nanoparticles on caries lesions in vitro-a review of the literature. Dent J (Basel). 2023;11(2):40.
https://doi.org/10.3390/dj11020040

PMid:36826185 PMCid:PMC9955150

 

8. Anil A, Ibraheem WI, Meshni AA, Preethanath RS, Anil S. Nano-Hydroxyapatite (nHAp) in the Remineralization of Early Dental Caries: A Scoping Review. Int J Environ Res Public Health. 2022;19(9):5629.
https://doi.org/10.3390/ijerph19095629

PMid:35565022 PMCid:PMC9102186

 

9. Pu'ad NASM, Koshy P, Abdullah HZ, Idris MI, Lee TC. Syntheses of hydroxyapatite from natural sources. Heliyon. 2019;5(5):e01588.
https://doi.org/10.1016/j.heliyon.2019.e01588

PMid:31080905 PMCid:PMC6507053

 

10. Pai RK, Bhat SS, Salman A, Chandra J. Use of an extract of indian sacred plant ocimum sanctum as an anticariogenic agent: an in vitro study. Int J Clin Pediatr Dent. 2015;8(2):99-101.
https://doi.org/10.5005/jp-journals-10005-1292

PMid:26379375 PMCid:PMC4562040

 

11. Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med. 2018;13:20.
https://doi.org/10.1186/s13020-018-0177-x

PMid:29692864 PMCid:PMC5905184

 

12. Dubale S, Kebebe D, Zeynudin A, abdissa N, Suleman S. Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in ethiopia. J Exp Pharmacol. 2023;15:51-62.
https://doi.org/10.2147/JEP.S379805

PMid:36789235 PMCid:PMC9922502

 

13. Sari YW, Saputra A, Bahtiar A, Nuzulia NA. Effects of microwave processing parameters on the properties of nanohydroxyapatite: Structural, spectroscopic, hardness, and toxicity studies. Ceramics International. 2021;47(21):30061-30070.
https://doi.org/10.1016/j.ceramint.2021.07.182

 

14. Florea AD, Dobrota CT, Carpa R, Racz CP, Tomoaia G, Mocanu A, Avram A, Soritau O, Pop LC, Cotisel MT. Optimization of functional toothpaste formulation containing nano-hydroxyapatite and birch extract for daily oral care. Materials (Basel). 2023;16(22):7143.
https://doi.org/10.3390/ma16227143

PMid:38005073 PMCid:PMC10672495

 

15. Fernandes NLS, Juliellen LDC, Andressa FBO, D'Alpino HPP, Sampaio CF. Resistance to erosive challenge of dental enamel treated with 1,450-ppm fluoride toothpastes containing different biomimetic compounds. Eur J Dent. 2021;15(3):433-439.
https://doi.org/10.1055/s-0041-1725576

 

16. Juntavee A, Juntavee N, Hirunmoon P. Remineralization potential of nanohydroxyapatite toothpaste compared with tricalcium phosphate and fluoride toothpaste on artificial carious lesions. Int J Dent. 2021; 2021: 5588832.
https://doi.org/10.1155/2021/5588832

 

17. Aziz S, Ana ID, Yusuf Y, Pranowo HD. Synthesis of biocompatible silver-doped carbonate hydroxyapatite nanoparticles using microwave-assisted precipitation and in vitro studies for the prevention of peri-implantitis. J Funct Biomater. 2023; 14(7): 385.
https://doi.org/10.3390/jfb14070385

 

18. Juntavee, A., Juntavee, N., & Sinagpulo, A. N. Nano-Hydroxyapatite Gel and Its Effects on Remineralization of Artificial Carious Lesions. Int J Dent. 2021;2021:7256056.
https://doi.org/10.1155/2021/7256056

 

19. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17-71.
https://doi.org/10.1116/1.2815690

 

20. Alsherif AA, Elbardisy DM, Taiema DA. Efficacy of nanohydroxyapatite versus acidulated phosphate fluoride on initial demineralized enamel surface (in vitro study). Egyptian Dental Journal. 2017; 63(2): 781-790.

 

21. Puspalatha C, Gayathri VS, Sowmya SV, Augustine D, Alamoudi A, Zidane B, Albar NHM, Bhandi S. Nanohydroxyapatite in dentistry: A comprehensive review. Saudi Dent J. 2023; 35(6): 741-752.
https://doi.org/10.1016/j.sdentj.2023.05.018

 

22. Huang, S., Gao, S., Cheng, L. & Yu, H. Combined effects of nano-hydroxyapatite and Galla chinensis on remineralisation of initial enamel lesion in vitro, Journal of Dentistry, 2010; 38 (10) :811-819.
https://doi.org/10.1016/j.jdent.2010.06.013

 

23. Aidaros N, Eliwa M, Kamh R. Remineralization efficiency of different toothpastes on human enamel subjected to acid challenge: an in vitro study. Al-Azhar Journal of Dentistry. 2022;9(1):61-72.
https://doi.org/10.21608/adjg.2021.66174.1346

 

24. Huang SB, Gao SS, Yu HY. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed Mater. 2009 Jun;4(3):034104.
https://doi.org/10.1088/1748-6041/4/3/034104

 

25. Manchery N, John J, Nagappan N, Subbiah GK, Premnath P. Remineralization potential of dentifrice containing nanohydroxyapatite on artificial carious lesions of enamel: A comparative in vitro study. Dent Res J (Isfahan). 2019 Sep-Oct; 16(5): 310-317.
https://doi.org/10.4103/1735-3327.266096

 

26. Tschoppe P, Zandim DL, Martus P, Kielbassa AM. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J Dent. 2011;39(6):430-7.
https://doi.org/10.1016/j.jdent.2011.03.008

 

27. Limeback H, Enax J, Meyer F. Improving oral health with fluoride-free calcium-phosphate-based biomimetic toothpastes: an update of the clinical evidence. Biomimetics (Basel). 2023;8(4):331.
https://doi.org/10.3390/biomimetics8040331

 

28. Ouchari L, Boukeskasse A, Bouizgarne B, Ouhdouch Y. Antimicrobial potential of actinomycetes isolated from the unexplored hot Merzouga desert and their taxonomic diversity. Biol Open. 2019; 8(2): bio035410.
https://doi.org/10.1242/bio.035410

 

29. Zhu Y, Wang Y, Zhang S, Li J, Li X, Ying Y, et al. Association of polymicrobial interactions with dental caries development and prevention. Front Microbiol. 2023; 14: 1237596.
https://doi.org/10.3389/fmicb.2023.1237596