Barbosa LM, Silva JAA, da Silva JIS, Ren TI, Vasconcelos BCE, Filho JRL. Artificial Neural Network-Assisted Facial Analysis for Planning of Orthognathic Surgery. J Clin Exp Dent. 2024;16(11):e1386-92.

 

doi:10.4317/jced.62088

https://doi.org/10.4317/jced.62088

_____

 

References

1. Patcas R, Bernini DAJ, Volokitin A, Agustsson E, Rothe R, Timofte R. Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age. Int J Oral e Maxillofac Surg 2019: 48: 77-83.
https://doi.org/10.1016/j.ijom.2018.07.010
PMid:30087062

 

2. Arnett GW, Bergman RT. Facial keys to orthodontic planning. Part I. Am J Orthod Dentofacial Orthop 1993: 103: 395-411.
https://doi.org/10.1016/S0889-5406(05)81791-3
PMid:8480709

 

3. Bouletreau P, Makaremi M, Ibrahim B, Louvrier A, Sigaux N, Artificial Intelligence: Applications in Orthognathic Surgery. J of Stomatol Oral Maxillofac Surg 2019: 4: 347-54.
https://doi.org/10.1016/j.jormas.2019.06.001
PMid:31254637

 

4. Kaplan A, Haenlein M. Siri, Siri, in my hand: who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz 2019: 62:15-25.
https://doi.org/10.1016/j.bushor.2018.08.004

 

5. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics 2017: 37: 505-15.
https://doi.org/10.1148/rg.2017160130
PMid:28212054 PMCid:PMC5375621

 

6. Arik SO, Ibragimov B, Xing L. Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging 2017: 4: 53-6.
https://doi.org/10.1117/1.JMI.4.1.014501
PMid:28097213 PMCid:PMC5220585

 

7. Miki Y, Muramatsu C, Hayashi T, Zhou X, Hara T, Katsumata A. Classification of teeth in cone-beam CT using deep convolutional neural network. Comput Biol Med 2017: 1: 24-9.
https://doi.org/10.1016/j.compbiomed.2016.11.003
PMid:27889430

 

8. Koestinger M, Wohlhart P, Roth PM, Bischof H. Annotated facial landmarks in the wild: A largescale, real-world database for facial landmark localization. ICCV Workshop; Barcelona, Espanha. IEEE 2011: 2144-51.
https://doi.org/10.1109/ICCVW.2011.6130513

 

9. Sagonas C, Tzimiropoulos G, Zafeirious S, Pantic M.300 faces in-the-wild challenge: The first facial landmark localization challenge. ICCV Workshop; Sydney, NSW, Australia. IEEE 2013: 397-403.
https://doi.org/10.1109/ICCVW.2013.59

 

10. Shen J, Zafeiriou S, Chrysos GG, Kossaifi J, Tzimiropoulos G, Pantic M. The first facial landmark tracking in-the-wild challenge: Benchmark and results. ICCV Workshop; Santiago, Chile. IEEE 2015: 1003-11.
https://doi.org/10.1109/ICCVW.2015.132

 

11. Liu Y, Wei F, Shao J, Sheng L, Yan J, Wang X. Exploring disentangled feature representation beyond face identification. CVPR; 2018; Salt Lake City, UT, USA. IEEE/CVF 2018: 2080-9.
https://doi.org/10.1109/CVPR.2018.00222

 

12. Dong X, Yang Y. Teacher Supervises Students How to Learn From Partially Labeled Images for Facial Landmark Detection. International Conference on Computer Vision; Seoul, South Korea. IEEE/CVF 2019: 783-92.
https://doi.org/10.1109/ICCV.2019.00087
PMCid:PMC6567040

 

13. Wu Y, Hassner T, Kim K, Medioni G, Natarajan P. Facial landmark detection with tweaked convolutional neural networks. IEEE Trans Pattern Anal Mach Intel 2018: 40: 3067-74.
https://doi.org/10.1109/TPAMI.2017.2787130
PMid:29990138

 

14. Guo J, Zhu X, Yang Y, Yang F, Lei Z, Li SZ. Towards Fast, Accurate and Stable 3D Dense Face Alignment. ECCV; Lecture Notes in Computer Science 2020: 13: 152-68.
https://doi.org/10.1007/978-3-030-58529-7_10

 

15. Serengil SI, Ozpinar A. HyperExtended LightFace: A Facial Attribute Analysis Framework. International Conference on Engineering and Emerging Technologies (ICEET); Istanbul, Turkey. IEEE 2021: 1-4.
https://doi.org/10.1109/ICEET53442.2021.9659697

 

16. Zhang K, Zhang Z, Li Z, Qiao Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters 2016: 23: 1499-599.
https://doi.org/10.1109/LSP.2016.2603342

 

17. Deng J, Guo J, Xue N, Zafeiriou S. Arcface: Additive angular margin loss for deep face recognition." Conference on Computer Vision and Pattern Recognition (CVPR); Long Beach, CA, USA. IEEE/CVF 2019: 4685-94.
https://doi.org/10.1109/CVPR.2019.00482
PMid:30957192 PMCid:PMC6522832

 

18. Ren S, Cao X, Wei Y, Sun J. Face Alignment at 3000 FPS via Regressing Local Binary Features. IEEE Conference on Computer Vision and Pattern Recognition; Columbus, OH, USA. IEEE 2014: 1685-92.
https://doi.org/10.1109/CVPR.2014.218
PMid:24375572

 

19. Kingma, Diederik P., and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 2014.

 

20. Altman, DG. Practical statistics for medical research. CRC press, 1990.
https://doi.org/10.1201/9780429258589

 

21. Fourcade A, Khonsari RH. Deep learning in medical image analysis: a third eye for doctors. Journal of Stomatology, Oral and Maxillofacial Surgery 2019: 145: 279-288.
https://doi.org/10.1016/j.jormas.2019.06.002
PMid:31254638

 

22. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015: 14: 27-38.

 

23. Data Science Academy. Deep Learning Book, 2019. Disponível em: <http://www.deeplearningbook.com.br/>. Acesso em: 05 dezembro. 2020.

 

24. Ming Yan, Jixiang Guo, Weidong Tian, Zhang Yi, Symmetric convolutional neural network for mandible segmentation, Knowledge-Based Systems 2018: 63-71.
https://doi.org/10.1016/j.knosys.2018.06.003