Saleem S, Rajendran R,
Moinak B, Anna J, Pramod BJ.
Evidence for transforming growth factor – beta 3 gene polymorphism in non-syndromic cleft lip and palate patients from indian sub-continent. Med Oral Patol Oral Cir Bucal. 2012 Mar 1;17 (2):e197-200.
doi:10.4317/medoral.17453
http://dx.doi.org/doi:10.4317/medoral.17453
1. Mitchell LE, Christensen K. Analysis of the
recurrence patterns for nonsyndromic cleft lip with
or without cleft palate in the families of 3,073 Danish probands.
Am J Med Genet. 1996;61:371-6.
http://dx.doi.org/10.1002/(SICI)1096-8628(19960202)61:4<371::AID-AJMG12>3.0.CO;2-P
2. Hecht JT, Yang P, Michels VV, Buektow
KH. Complex segregation analysis of nonsyndromic
cleft lip and palate. Am J Hum Genet. 1991;49:674–81.
PMid:1882845 PMCid:1683132
3. Wong FK, Hagberg C, Karsten
A, Larson O, Gustavsson M, Huggare
J,et al. Linkage analysis of candidate regions in
Swedish nonsyndromic cleft lip with or without cleft
palate families. Cleft Palate Craniofac J. 2000;37:357-62.
http://dx.doi.org/10.1597/1545-1569(2000)037<0357:LAOCRI>2.3.CO;2
4. Brunet CL, Sharpe PM, Ferguson MW. Inhibition of
TGF-beta 3 (but not TGF-beta 1 or TGF-beta 2) activity prevents normal mouse
embryonic palate fusion. Int J Dev Biol. 1995;39:345-55.
PMid:7669547
5. Vieira AR, Orioli IM, Castilla EE, Cooper ME, Marazita
ML, Murray JC. MSX1 and TGFB3 contribute to clefting
in South America. J Dent Res. 2003;82:289-92.
http://dx.doi.org/10.1177/154405910308200409
PMid:12651933
6. Dudas M, Nagy A, Laping
NJ, Moustakas A, Kaartinen
V. Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad
pathway. Dev Biol. 2004;266:96–108.
http://dx.doi.org/10.1016/j.ydbio.2003.10.007
PMid:14729481
7. Kim MH, Kim HJ, Choi JY, Nahm DS. Transforming growth factor–beta 3 gene
SfaN1 polymorphism in Korean nonsyndromic cleft lip
and palate patients.J Biochem
Mol Biol. 2003;36:533-7.
http://dx.doi.org/10.5483/BMBRep.2003.36.6.533
PMid:14659070
8. Sun D, Vanderburg CR, Odierna GS, Hay ED. TGFbeta3
promotes transformation of chicken palate medial edge epithelium to mesenchyme in vitro. Development.
1998;125:95-105.
PMid:9389667
9. Taya Y,
O’Kane S, Ferguson MW. Pathogenesis
of cleft palate in TGF-beta3 knockout mice.Development.
1999;126:3869-79.
PMid:10433915
10. Murray JC. Face facts: genes, environment, and
clefts. Am J Hum Genet.1995;57:227–32.
PMid:7668246 PMCid:1801562
11. Fraser FC. The genetics of cleft lip and cleft palate.Am
J Hum Genet.1970;22:336–52.
PMid:4910698 PMCid:1706547
12. Schutte BC, Murray JC. The many faces and factors
of orofacial clefts. Hum Mol Genet. 1999;8:1853-9.
http://dx.doi.org/10.1093/hmg/8.10.1853
PMid:10469837
13. Ferguson MW. Palate development.Development. 1988;103Suppl:41–60.
14. Ferguson WJ. Epithelial-mesenchymal
interactions during vertebrate palatogenesis. Curr Top Dev Biol. 1984;19:137–64.
http://dx.doi.org/10.1016/S0070-2153(08)60398-1
15. Kaartinen V, Cui XM, Heisterkamp N, Groffen J, Shuler
CF. Transforming growth factor-beta3 regulates transdifferentiation
of medial edge epithelium during palatal fusion and associated degradation of
the basement membrane. Dev Dyn. 1997;209:255–60.
http://dx.doi.org/10.1002/(SICI)1097-0177(199707)209:3<255::AID-AJA1>3.0.CO;2-H
16. Tudela C, Formoso MA, Martínez T, Pérez R, Aparicio M, Maestro C, et
al. TGF-beta3 is required for the adhesion and
intercalation of medial edge epithelial cells during palate fusion. Int J Dev Biol. 2002;46:333-6.
PMid:12068957
17. Martinez-Alvarez C, Tudela C, Perez-Miguelsanz
J, O’Kane S, Puerta J, Ferguson
MW. Medial edge epithelial cell fate
during palatal fusion. Dev Biol. 2000;220:343–57.
http://dx.doi.org/10.1006/dbio.2000.9644
PMid:10753521
18. Kohama K, Nonaka K,
Hosokawa R, Shum L, Ohishi M. TGF-beta-3 promotes scarless repair of cleft lip in mouse fetuses. J Dent Res.
2002;81:688-94.
http://dx.doi.org/10.1177/154405910208101007
PMid:12351667
19. Proetzel G, Pawlowski
SA, Wiles MV, Yin M, Boivin GP, Howles
PN, et al. Transforming growth factor-beta 3 is required for secondary palate
fusion. Nat Genet. 1995;11:409-14.
http://dx.doi.org/10.1038/ng1295-409
PMid:7493021
20. Tyler MS, Koch WE. In vitro
development of palatal tissues from embryonic mice. III. Interactions
between palatal epithelium and heterotypic oral mesenchyme.
J Embryol Exp Morphol.
1977;38:37–48.
PMid:886249
21. Baroni T, Carinci P, Bellucci C, Lilli C, Becchetti E,
Carinci F, et al. Cross-talk between interleukin-6
and transforming growth factor-beta3 regulates extracellular matrix production
by human fibroblasts from subjects with non-syndromic
cleft lip and palate. J Periodontol.
2003;74:1447-53.
http://dx.doi.org/10.1902/jop.2003.74.10.1447
PMid:14653390
22. Lidral AC, Murray JC, Buetow
KH, Basart AM, Schearer H, Shiang R, et al. Studies of the candidate genes TGFB2,
MSX1, TGFA, and TGFB3 in the etiology of cleft lip and palate in the Philippines.
Cleft Palate Craniofac J. 1997;34:1-6.
http://dx.doi.org/10.1597/1545-1569(1997)034<0001:SOTCGT>2.3.CO;2
23. Tanabe A, Taketani S, Endo-Ichikawa Y, Tokunaga
R, Ogawa Y, Hiramoto M. Analysis of the candidate
genes responsible for non-syndromic cleft lip and
palate in Japanese people. Clin Sci
(Lond). 2000;99:105-11.
http://dx.doi.org/10.1042/CS19990272
PMid:10918043
24. Jugessur A, Lie RT, Wilcox AJ, Murray JC, Taylor
JA, Saugstad OD, et al. Variants of developmental
genes (TGFA, TGFB3, and MSX1) and their associations with orofacial
clefts: a case-parent triad analysis. Genet Epidemiol. 2003;24:230-9.
http://dx.doi.org/10.1002/gepi.10223
PMid:12652527
25. Hagberg, C, Larson O, Milerad J. Incidence of
cleft lip and palate and risks of additional malformations. Cleft Palate
Craniofac J. 1998;35:40–5.
http://dx.doi.org/10.1597/1545-1569(1998)035<0040:IOCLAP>2.3.CO;2
26. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous
addition of TGF-beta 3 to cutaneous rat wounds
reduces scarring. J Cell Sci. 1995;108:985-1002.
PMid:7542672