Fawzy-El-Sayed K, Mekhemar M, Adam-Klages S, Kabelitz D, Dšrfer C. TLR expression profile of human gingival margin-derived stem progenitor cells. Med Oral Patol Oral Cir Bucal. 2016 Jan 1;21 (1):e30-8.  

 

 

doi:10.4317/medoral.20593

http://dx.doi.org/doi:10.4317/medoral.20593

 

 

1. Larjava H, Wiebe C, Gallant-Behm C, Hart DA, Heino J, HŠkkinen L. Exploring scarless healing of oral soft tissues. J Can Dent Assoc. 2011;77:b18.

 

2. Pitaru S, McCulloch CA, Narayanan SA. Cellular origins and differentiation control mechanisms during periodontal development and wound healing. J Periodontal Res. 1994;29:81-94.
http://dx.doi.org/10.1111/j.1600-0765.1994.tb01095.x

 

3. Sempowski GD, Borrello MA, Blieden TM, Barth RK, Phipps RP. Fibroblast heterogeneity in the healing wound. Wound Repair Regen. 1995;3:120-31.
http://dx.doi.org/10.1046/j.1524-475X.1995.30204.x

 

4. Schor SL, Ellis I, Irwin CR, Banyard J, Seneviratne K, Dolman C, et al. Subpopulations of fetal-like gingival fibroblasts: characterisation and potential significance for wound healing and the progression of periodontal disease. Oral Dis. 1996;2:155-66.
http://dx.doi.org/10.1111/j.1601-0825.1996.tb00217.x

 

5. Phipps RP, Borrello MA, Blieden TM. Fibroblast heterogeneity in the periodontium and other tissues. J Periodontal Res. 1997;32:159-65.
http://dx.doi.org/10.1111/j.1600-0765.1997.tb01398.x

 

6. HŠkkinen L, Uitto VJ, Larjava H. Cell biology of gingival wound healing. Periodontol 2000. 2000;24:127-52.
http://dx.doi.org/10.1034/j.1600-0757.2000.024001127.x

 

7. Widera D, Zander C, Heidbreder M, Kasperek Y, Noll T, Seitz O, et al. Adult palatum as a novel source of neural crest-related stem cells. Stem Cells. 2009;27:1899-910.
http://dx.doi.org/10.1002/stem.104

 

8. Marynka-Kalmani K, Treves S, Yafee M, Rachima H, Gafni Y, Cohen MA, et al. The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells. 2010;28:984-95.
http://dx.doi.org/10.1002/stem.425

 

9. Mitrano TI, Grob MS, Carri—n F, Nova-Lamperti E, Luz PA, Fierro FS, et al. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol. 2010;81:917-25.
http://dx.doi.org/10.1902/jop.2010.090566

 

10. Fournier BP, Ferre FC, Couty L, Lataillade JJ, Gourven M, Naveau A, et al. Multipotent progenitor cells in gingival connective tissue. Tissue Eng Part A. 2010;16:2891-9.
http://dx.doi.org/10.1089/ten.tea.2009.0796

 

11. Tomar GB, Srivastava RK, Gupta N, Barhanpurkar AP, Pote ST, Jhaveri HM, et al. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun. 2010;393:377-83.
http://dx.doi.org/10.1016/j.bbrc.2010.01.126

 

12. Tang L, Li N, Xie H, Jin Y. Characterization of mesenchymal stem cells from human normal and hyperplastic gingiva. J Cell Physiol. 2011;226:832-42.
http://dx.doi.org/10.1002/jcp.22405

 

13. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183:7787-98.
http://dx.doi.org/10.4049/jimmunol.0902318

 

14. Moshaverinia A, Chen C, Akiyama K, Ansari S, Xu X, Chee WW, et al. Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J Mater Sci Mater Med. 2012;23:3041-51.
http://dx.doi.org/10.1007/s10856-012-4759-3

 

15. Fawzy El-Sayed KM, Paris S, Becker ST, Neuschl M, De Buhr W, SŠlzer S, et al. Periodontal regeneration employing gingival margin-derived stem/progenitor cells: an animal study. J Clin Periodontol. 2012;39:861-70.
http://dx.doi.org/10.1111/j.1600-051X.2012.01904.x

 

16. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373-84.
http://dx.doi.org/10.1038/ni.1863

 

17. Getts DR, Chastain EM, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. 2013;255:197-209.
http://dx.doi.org/10.1111/imr.12091

 

18. Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease. Nat Immunol. 2004;5:975-9.
http://dx.doi.org/10.1038/ni1116

 

19. Liotta F, Angeli R, Cosmi L, Fil“ L, Manuelli C, Frosali F, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells. 2008;26:279-89.
http://dx.doi.org/10.1634/stemcells.2007-0454

 

20. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5:987-95.
http://dx.doi.org/10.1038/ni1112

 

21. Hwa Cho H, Bae YC, Jung JS. Role of toll-like receptors on human adipose-derived stromal cells. Stem Cells. 2006;24:2744-52.
http://dx.doi.org/10.1634/stemcells.2006-0189

 

22. van den Berk LC, Jansen BJ, Siebers-Vermeulen KG, Netea MG, Latuhihin T, Bergevoet S, et al. Toll-like receptor triggering in cord blood mesenchymal stem cells. J Cell Mol Med. 2009;13:3415-26.
http://dx.doi.org/10.1111/j.1582-4934.2008.00653.x

 

23. Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells. 2008;26:99-107.
http://dx.doi.org/10.1634/stemcells.2007-0563

 

24. Raicevic G, Najar M, Stamatopoulos B, De Bruyn C, Meuleman N, Bron D, et al. The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties. Cell Immunol. 2011;270:207-16.
http://dx.doi.org/10.1016/j.cellimm.2011.05.010

 

25. Tomic S, Djokic J, Vasilijic S, Vucevic D, Todorovic V, Supic G, et al. Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev. 2011;20:695-708.
http://dx.doi.org/10.1089/scd.2010.0145

 

26. DelaRosa O, Lombardo E. Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential. Mediators Inflamm. 2010;2010:865601.
http://dx.doi.org/10.1155/2010/865601

 

27. El-Sayed KM, Paris S, Graetz C, Kassem N, Mekhemar M, Ungefroren H, et al. Isolation and characterisation of human gingival margin-derived STRO-1/MACS(+) and MACS(-) cell populations. Int J Oral Sci. 2015;7:80-8.
http://dx.doi.org/10.1038/ijos.2014.41

 

28. Ge S, Mrozik KM, Menicanin D, Gronthos S, Bartold PM. Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue: potential use for clinical therapy. Regen Med. 2012;7:819-32.
http://dx.doi.org/10.2217/rme.12.61

 

29. Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, et al. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res. 1997;12:1335-47.
http://dx.doi.org/10.1359/jbmr.1997.12.9.1335

 

30. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315-7.
http://dx.doi.org/10.1080/14653240600855905

 

31. Liao J, Hu N, Zhou N, Lin L, Zhao C, Yi S, et al. Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation. PLoS One. 2014;9:e89025.
http://dx.doi.org/10.1371/journal.pone.0089025

 

32. Raicevic G, Rouas R, Najar M, Stordeur P, Boufker HI, Bron D, et al. Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells. Hum Immunol. 2010;71:235-44.
http://dx.doi.org/10.1016/j.humimm.2009.12.005

 

33. Gronthos S, Akintoye SO, Wang CY, Shi S. Bone marrow stromal stem cells for tissue engineering. Periodontol 2000. 2006;41:188-95.
http://dx.doi.org/10.1111/j.1600-0757.2006.00154.x

 

34. Fawzy El-Sayed KM, Paris S, Becker S, Kassem N, Ungefroren H, FŠndrich F, et al. Isolation and characterization of multipotent postnatal stem/progenitor cells from human alveolar bone proper. J Craniomaxillofac Surg. 2012;40:735-42.
http://dx.doi.org/10.1016/j.jcms.2012.01.010

 

35. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luri‡ EA, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol. 1974;2:83-92.

 

36. Nanci A, Bosshardt DD. Structure of periodontal tissues in health and disease. Periodontol 2000. 2006;40:11-28.
http://dx.doi.org/10.1111/j.1600-0757.2005.00141.x

 

37. Crop MJ, Baan CC, Korevaar SS, Ijzermans JN, Pescatori M, Stubbs AP, et al. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells. Clin Exp Immunol. 2010;162:474-86.
http://dx.doi.org/10.1111/j.1365-2249.2010.04256.x

 

38. Hemeda H, Jakob M, Ludwig AK, Giebel B, Lang S, Brandau S. Interferon-gamma and tumor necrosis factor-alpha differentially affect cytokine expression and migration properties of mesenchymal stem cells. Stem Cells Dev. 2010;19:693-706.
http://dx.doi.org/10.1089/scd.2009.0365

 

39. van den Berk LC, Jansen BJ, Siebers-Vermeulen KG, Netea MG, Latuhihin T, Bergevoet S, et al. Toll-like receptor triggering in cord blood mesenchymal stem cells. J Cell Mol Med. 2009;13:3415-26.
http://dx.doi.org/10.1111/j.1582-4934.2008.00653.x

 

40. Kim HS, Shin TH, Yang SR, Seo MS, Kim DJ, Kang SK, et al. Implication of NOD1 and NOD2 for the differentiation of multipotent mesenchymal stem cells derived from human umbilical cord blood. PLoS One. 2010;5:e15369.
http://dx.doi.org/10.1371/journal.pone.0015369

 

41. Raicevic G, Najar M, Stamatopoulos B, De Bruyn C, Meuleman N, Bron D, et al. The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties. Cell Immunol. 2011;270:207-16.
http://dx.doi.org/10.1016/j.cellimm.2011.05.010

 

42. Raicevic G, Rouas R, Najar M, Stordeur P, Boufker HI, Bron D, et al. Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells. Hum Immunol. 2010;71:235-44.
http://dx.doi.org/10.1016/j.humimm.2009.12.005

 

43. Li C, Li B, Dong Z, Gao L, He X, Liao L, et al. Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway. Stem Cell Res Ther. 2014;5:67.
http://dx.doi.org/10.1186/scrt456

 

44. Mei YB, Zhou WQ, Zhang XY, Wei XJ, Feng ZC. Lipopolysaccharides shapes the human Wharton's jelly-derived mesenchymal stem cells in vitro. Cell Physiol Biochem. 2013;32:390-401.
http://dx.doi.org/10.1159/000354446

 

45. Tomic S, Djokic J, Vasilijic S, Vucevic D, Todorovic V, Supic G, et al. Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev. 2011;20:695-708.
http://dx.doi.org/10.1089/scd.2010.0145

 

46. Chatzivasileiou K, Lux CA, Steinhoff G, Lang H. Dental follicle progenitor cells responses to Porphyromonas gingivalis LPS. J Cell Mol Med. 2013;17:766-73.
http://dx.doi.org/10.1111/jcmm.12058

 

47. Yamagishi VT, Torneck CD, Friedman S, Huang GT, Glogauer M. Blockade of TLR2 inhibits Porphyromonas gingivalis suppression of mineralized matrix formation by human dental pulp stem cells. J Endod. 2011;37:812-8.
http://dx.doi.org/10.1016/j.joen.2011.03.013

 

48. Romieu-Mourez R, Franois M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol. 2009;1822:7963-73.
http://dx.doi.org/10.4049/jimmunol.0803864

 

49. Shi L, Wang JS, Liu XM, Hu XY, Fang Q. Upregulated functional expression of Toll like receptor 4 in mesenchymal stem cells induced by lipopolysaccharide. Chin Med J (Engl). 2007;120:1685-8.

 

50. Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature. 1998;395:284-8.
http://dx.doi.org/10.1038/26239

 

51. Good DW, George T, Watts BA. Toll-like receptor 2 is required for LPS-induced Toll-like receptor 4 signaling and inhibition of ion transport in renal thick ascending limb. J Biol Chem. 2012;287:20208-20.
http://dx.doi.org/10.1074/jbc.M111.336255

 

52. Kawai T, Akira S. Pathogen recognition with Toll-like receptors. Curr Opin Immunol. 2005;17:338-44.
http://dx.doi.org/10.1016/j.coi.2005.02.007

 

53. Scannapieco FA, Kornman KS, Coykendall AL. Observation of fimbriae and flagella in dispersed subgingival dental plaque and fresh bacterial isolates from periodontal disease. J Periodontal Res. 1983;18:620-33.
http://dx.doi.org/10.1111/j.1600-0765.1983.tb00399.x

 

54. Sela MN. Role of Treponema denticola in periodontal diseases. Crit Rev Oral Biol Med. 2001;12:399-413.
http://dx.doi.org/10.1177/10454411010120050301

 

55. Siqueira JF, R™as IN. Bacterial pathogenesis and mediators in apical periodontitis. Braz Dent J. 2007;18:267-80.
http://dx.doi.org/10.1590/S0103-64402007000400001

 

56. Ihara H, Miura T, Kato T, Ishihara K, Nakagawa T, Yamada S, et al. Detection of Campylobacter rectus in periodontitis sites by monoclonal antibodies. J Periodontal Res. 2003;38:64-72.
http://dx.doi.org/10.1034/j.1600-0765.2003.01627.x

 

57. Spratt DA, Weightman AJ, Wade WG. Diversity of oral asaccharolytic Eubacterium species in periodontitis--identification of novel phylotypes representing uncultivated taxa. Oral Microbiol Immunol. 1999;14:56-9.
http://dx.doi.org/10.1034/j.1399-302X.1999.140107.x

 

58. Xagorari A, Chlichlia K. Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol J. 2008;2:49-59.
http://dx.doi.org/10.2174/1874285800802010049

 

59. Kumagai Y, Kumar H, Koyama S, Kawai T, Takeuchi O, Akira S. Cutting Edge: TLR-Dependent viral recognition along with type I IFN positive feedback signaling masks the requirement of viral replication for IFN-{alpha} production in plasmacytoid dendritic cells. J Immunol. 2009;182:3960-4.
http://dx.doi.org/10.4049/jimmunol.0804315