Saghiri MA, Asatourian A, Garcia-Godoy F, Sheibani N. The role of angiogenesis in implant dentistry part I: Review of titanium alloys, surface characteristics and treatments. Med Oral Patol Oral Cir Bucal. 2016 Jul 1;21 (4):e514-25. 

 

 

doi:10.4317/medoral.21199

http://dx.doi.org/doi:10.4317/medoral.21199

 

 

 

1. Williams D. Titanium and titanium alloys. CRC Press, Inc, Biocompatibility of Clin Imp Mater 1981;1:9-44.

 

 

 

2. Saghiri MA, Ghasemi M, Moayer AR, Sheibani N, Garcia-Godoy F, Asatourian A, et al. A novel method to evaluate the neurocompatibility of dental implants. Int J Oral Maxillofac Imp. 2013;29:41-50.
http://dx.doi.org/10.11607/jomi.3188

 

 

 

3. BrŒnemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983;50:399-410.
http://dx.doi.org/10.1016/S0022-3913(83)80101-2

 

 

 

4. Le GuŽhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent mater. 2007;23:844-54.
http://dx.doi.org/10.1016/j.dental.2006.06.025

 

 

 

5. Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials. 1998;19:2219-32.
http://dx.doi.org/10.1016/S0142-9612(98)00144-6

 

 

 

6. Schwartz Z, Raz P, Zhao G, Barak Y, Tauber M, Yao H, et al. Effect of micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo. J Bone Joint Surg. 2008;90:2485-98.
http://dx.doi.org/10.2106/JBJS.G.00499

 

 

 

7. Boyan BD, Schwartz Z, Lohmann CH, Sylvia VL, Cochran DL, Dean DD, et al. Pretreatment of bone with osteoclasts affects phenotypic expression of osteoblast-like cells. J Orthop Res. 2003;21:638-47.
http://dx.doi.org/10.1016/S0736-0266(02)00261-9

 

 

 

8. Vlacic-Zischke J, Hamlet S, Friis T, Tonetti M, Ivanovski S. The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFβ/BMP signalling in osteoblasts. Biomaterials. 2011;32:665-71.
http://dx.doi.org/10.1016/j.biomaterials.2010.09.025

 

 

 

9. Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, et al. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res. 1996;32:55-63.
http://dx.doi.org/10.1002/(SICI)1097-4636(199609)32:1<55::AID-JBM7>3.0.CO;2-O

 

 

 

10. Saghiri MA, Asatourian A, Sheibani N. Angiogenesis in regenerative dentistry. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119:22.
http://dx.doi.org/10.1016/j.oooo.2014.09.023

 

 

 

11. Saghiri MA, Asatourian A, Sorenson CM, Sheibani N. Role of Angiogenesis in Endodontics: Contributions of Stem Cells and Proangiogenic and Antiangiogenic Factors to Dental Pulp Regeneration. J Endod. 2015;41:797-803.
http://dx.doi.org/10.1016/j.joen.2014.12.019

 

 

 

12. Nobuto T, Suwa F, Kono T, Taguchi Y, Takahashi T, Kanemura N, et al. Microvascular response in the periosteum following mucoperiosteal flap surgery in dogs: angiogenesis and bone resorption and formation. J Periodontol. 2005;76:1346-53.
http://dx.doi.org/10.1902/jop.2005.76.8.1346

 

 

 

13. Abshagen K, Schrodi I, Gerber T, Vollmar B. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone¨. J Biomed Mater Res Part A. 2009;91:557-66.
http://dx.doi.org/10.1002/jbm.a.32237

 

 

 

14. Shi B, Andrukhov O, Berner S, Schedle A, Rausch-Fan X. The angiogenic behaviors of human umbilical vein endothelial cells (HUVEC) in co-culture with osteoblast-like cells (MG-63) on different titanium surfaces. Dent Mater. 2014;30:839-47.
http://dx.doi.org/10.1016/j.dental.2014.05.005

 

 

 

15. Sautier JM, Nefussi JR, Forest N. Surface-reactive biomaterials in osteoblast cultures: an ultrastructural study. Biomaterials. 1992;13:400-2.
http://dx.doi.org/10.1016/0142-9612(92)90046-Q

 

 

 

16. Saghiri MA, Asgar K, Lotfi M, Karamifar K, Saghiri AM, Neelakantan P, et al. Back-scattered and secondary electron images of scanning electron microscopy in dentistry: a new method for surface analysis. Acta Odontol Scandinavia. 2012;70:603-9.
http://dx.doi.org/10.3109/00016357.2011.645057

 

 

 

17. Lee MC, Yoshino F, Shoji H, Takahashi S, Todoki K, Shimada S, et al. Characterization by electron spin resonance spectroscopy of reactive oxygen species generated by titanium dioxide and hydrogen peroxide. J Dent Res. 2005;84:178-82.
http://dx.doi.org/10.1177/154405910508400213

 

 

 

18. Hallab NJ, Jacobs JJ, Skipor A, Black J, Mikecz K, Galante JO. Systemic metal-protein binding associated with total joint replacement arthroplasty. J Biomed Mater Res. 2000;49:353-61.
http://dx.doi.org/10.1002/(SICI)1097-4636(20000305)49:3<353::AID-JBM8>3.0.CO;2-T

 

 

 

19. Mentus SV. Oxygen reduction on anodically formed titanium dioxide. Electrochim acta. 2004;50:27-32.
http://dx.doi.org/10.1016/j.electacta.2004.07.009

 

 

 

20. Irwin DC, McCord JM, Nozik-Grayck E, Beckly G, Foreman B, Sullivan T, et al. A potential role for reactive oxygen species and the HIF-1α–VEGF pathway in hypoxia-induced pulmonary vascular leak. Free Radic Biol Med. 2009;47:55-61.
http://dx.doi.org/10.1016/j.freeradbiomed.2009.03.027

 

 

 

21. Gough D, Cotter T. Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis. 2011;2:e213.
http://dx.doi.org/10.1038/cddis.2011.96

 

 

 

22. Tsaryk R, Kalbacova M, Hempel U, Scharnweber D, Unger RE, Dieter P, et al. Response of human endothelial cells to oxidative stress on Ti6Al4V alloy. Biomaterials. 2007;28:806-13.
http://dx.doi.org/10.1016/j.biomaterials.2006.09.033

 

 

 

23. Degidi M, Artese L, Scarano A, Perrotti V, Gehrke P, Piattelli A. Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps. J Periodontol. 2006;77:73-80.
http://dx.doi.org/10.1902/jop.2006.77.1.73

 

 

 

24. Zhang Z, Huang C, Li J, Leonard SS, Lanciotti R, Butterworth L, et al. Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch Biochem Biophys. 2001;392:311-20.
http://dx.doi.org/10.1006/abbi.2001.2464

 

 

 

25. Zhang Z, Leonard SS, Huang C, Vallyathan V, Castranova V, Shi X. Role of reactive oxygen species and MAPKs in vanadate-induced G(2)/M phase arrest. Free Radic Biol Med. 2003;34:1333-42.
http://dx.doi.org/10.1016/S0891-5849(03)00145-X

 

 

 

26. Saghiri MA, Orangi J, Tanideh N, Janghorban K, Sheibani N. Effect of Endodontic Cement on Bone Mineral Density Using Serial Dual-energy X-ray Absorptiometry. J Endod. 2014;40:648-51.
http://dx.doi.org/10.1016/j.joen.2013.11.025

 

 

 

27. Sul YT, Johansson C, Wennerberg A, Cho LR, Chang BS, Albrektsson T. Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Maxillofac Implants. 2004;20:349-59.

 

 

 

28. Cochran DL, Buser D, Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, et al. The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: early results from clinical trials on ITI SLA implants. Clin Oral Implants Res. 2002;13:144-53.
http://dx.doi.org/10.1034/j.1600-0501.2002.130204.x

 

 

 

29. Anil S, Anand P, Alghamdi H, Jansen J. Dental implant surface enhancement and osseointegration. Implant Dentistry: A Rapidly Evolving Practice New York. InTech. 2011;83:108.

 

 

 

30. Eriksson C, Lausmaa J, Nygren H. Interactions between human whole blood and modified TiO2-surfaces: influence of surface topography and oxide thickness on leukocyte adhesion and activation. Biomaterials. 2001;22:1987-96.
http://dx.doi.org/10.1016/S0142-9612(00)00382-3

 

 

 

31. Dahiya V, Shukla P, Gupta S. Surface topography of dental implants: A review. J Dent Imp. 2014;4:66.
http://dx.doi.org/10.4103/0974-6781.131009

 

 

 

32. Shibli JA, Grassi S, Cristina de Figueiredo L, Feres M, Marcantonio E, Iezzi G, et al. Influence of implant surface topography on early osseointegration: a histological study in human jaws. J Biomed Mater Res Part B. Appl Biomateri. 2007;80:377-85.
http://dx.doi.org/10.1002/jbm.b.30608

 

 

 

33. Refai AK, Textor M, Brunette DM, Waterfield JD. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res Part A. 2004;70:194-205.
http://dx.doi.org/10.1002/jbm.a.30075

 

 

 

34. Raines AL, Olivares-Navarrete R, Wieland M, Cochran DL, Schwartz Z, Boyan BD. Regulation of angiogenesis during osseointegration by titanium surface microstructure and energy. Biomaterials. 2010;31:4909-17.
http://dx.doi.org/10.1016/j.biomaterials.2010.02.071

 

 

 

35. Olivares-Navarrete R, Hyzy S, Gittens IRA, Schneider JM, Haithcock DA, Ullrich PF, et al. Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine J. 2013;13:1563-70.
http://dx.doi.org/10.1016/j.spinee.2013.03.047

 

 

 

36. Vandamme K, Naert I, Vander Sloten J, Puers R, Duyck J. Effect of implant surface roughness and loading on peri-implant bone formation. J Periodontol. 2007;79:150-7.
http://dx.doi.org/10.1902/jop.2008.060413

 

 

 

37. Saghiri MA, Asgar K, Lotfi M, Garcia-Godoy F. Nanomodification of mineral trioxide aggregate for enhanced physiochemical properties. Int Endod J. 2012;45:979-88.
http://dx.doi.org/10.1111/j.1365-2591.2012.02056.x

 

 

 

38. Brett P, Harle J, Salih V, Mihoc R, Olsen I, Jones F, et al. Roughness response genes in osteoblasts. Bone. 2004;35:124-33.
http://dx.doi.org/10.1016/j.bone.2004.03.009

 

 

 

39. Webster TJ, Siegel RW, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials. 1999;20:1221-7.
http://dx.doi.org/10.1016/S0142-9612(99)00020-4

 

 

 

40. Dalby MJ, Andar A, Nag A, Affrossman S, Tare R, McFarlane S, et al. Genomic expression of mesenchymal stem cells to altered nanoscale topographies. J Royal Soc Interface. 2008;5:1055-65.
http://dx.doi.org/10.1098/rsif.2008.0016

 

 

 

41. Mendona G, Mendonca D, Aragao FJ, Cooper LF. Advancing dental implant surface technology–from micron-to nanotopography. Biomaterials. 2008;29:3822-35.
http://dx.doi.org/10.1016/j.biomaterials.2008.05.012

 

 

 

42. Peng L, Eltgroth ML, LaTempa TJ, Grimes CA, Desai TA. The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials. 2009;30:1268-72.
http://dx.doi.org/10.1016/j.biomaterials.2008.11.012

 

 

 

43. Jo DH, Kim JH, Son JG, Song NW, Kim YI, Yu YS, et al. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomedicine. 2014;10:1109-17.
http://dx.doi.org/10.1016/j.nano.2014.02.007

 

 

 

44. Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, et al. A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta biomater. 2014;10:2894-906.
http://dx.doi.org/10.1016/j.actbio.2014.02.040

 

 

 

45. Elias CN, Oshida Y, Lima JHC, Muller CA. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater. 2008;1:234-42.
http://dx.doi.org/10.1016/j.jmbbm.2007.12.002

 

 

 

46. van Wachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG. Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials. 1985;6:403-8.
http://dx.doi.org/10.1016/0142-9612(85)90101-2

 

 

 

47. Shi B, Andrukhov O, Berner S, Schedle A, Rausch-Fan X. The angiogenic behaviors of human umbilical vein endothelial cells (HUVEC) in co-culture with osteoblast-like cells (MG-63) on different titanium surfaces. Dent Mater. 2014;30:839-47.
http://dx.doi.org/10.1016/j.dental.2014.05.005

 

 

 

48. Ziebart T, Schnell A, Walter C, KŠmmerer PW, Pabst A, Lehmann KM, et al. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces. Clin Oral Investig. 2013;17:301-9.
http://dx.doi.org/10.1007/s00784-012-0691-7

 

 

 

49. Donos N, Hamlet S, Lang N, Salvi G, Huynh-Ba G, Bosshardt D, et al. Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface. Clin Oral Imp Res. 2011;22:365-72.
http://dx.doi.org/10.1111/j.1600-0501.2010.02113.x

 

 

 

50. Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, et al. Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. J Periodontol. 2007;78:2171-84.
http://dx.doi.org/10.1902/jop.2007.070157

51. Ren N, Li J, Qiu J, Sang Y, Jiang H, Boughton RI, et al. Nanostructured titanate with different metal ions on the surface of metallic titanium: a facile approach for regulation of rBMSCs fate on titanium implants. Small. 2014;10:3169-80.
http://dx.doi.org/10.1002/smll.201303391

 

 

 

52. Mamalis A, Silvestros S. Modified Titanium Surfaces Alter Osteogenic Differentiation: A Comparative Microarray-Based Analysis of Human Mesenchymal Cell Response to Commercial Titanium Surfaces. J Oral Implantol. 2013;39:591-601.
http://dx.doi.org/10.1563/AAID-JOI-D-10-00209

 

 

 

53. Mamalis AA, Silvestros SS. Analysis of osteoblastic gene expression in the early human mesenchymal cell response to a chemically modified implant surface: an in vitro study. Clin Oral Imp Res. 2011;22:530-7.
http://dx.doi.org/10.1111/j.1600-0501.2010.02049.x

 

 

 

54. An N, Schedle A, Wieland M, Andrukhov O, Matejka M, Rausch-Fan X. Proliferation, behavior, and cytokine gene expression of human umbilical vascular endothelial cells in response to different titanium surfaces. J Biomed Mater Res Part A. 2010;93:364-72.

 

 

 

55. Al-Nawas B, Wagner W, Grštz KA. Insertion torque and resonance frequency analysis of dental implant systems in an animal model with loaded implants. Int J Oral Maxillofac Implants. 2006;21:726-32.

 

 

 

56. Kirsch A. Plasma-sprayed titanium-I.M.Z. implant. J Oral Implantol. 1986;12:494-7.

 

 

 

57. Clark PA, Rodriguez A, Sumner DR, Hussain MA, Mao JJ. Modulation of bone ingrowth of rabbit femur titanium implants by in vivo axial micromechanical loading. J Appl Physiol. 2005;98:1922-9.
http://dx.doi.org/10.1152/japplphysiol.01080.2004

 

 

 

58. Degidi M, Artese L, Rubini C, Perrotti V, Iezzi G, Piattelli A. Microvessel density and vascular endothelial growth factor expression in sinus augmentation using Bio-Oss¨. Oral Dis. 2006;12:469-75.
http://dx.doi.org/10.1111/j.1601-0825.2006.01222.x

 

 

 

59. Chen Y, Wang J, Zhu XD, Tang ZR, Yang X, Tan YF, et al. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence. Acta Biomater. 2015;11:435-48.
http://dx.doi.org/10.1016/j.actbio.2014.09.028

 

 

 

60. Canuto R, Pol R, Martinasso G, Muzio G, Gallesio G, Mozzati M. Hydroxyapatite paste Ostim¨, without elevation of full-thickness flaps, improves alveolar healing stimulating BMP-and VEGF-mediated signal pathways: an experimental study in humans. Clin Oral Imp Res. 2013;24:42-8.
http://dx.doi.org/10.1111/j.1600-0501.2011.02363.x

 

 

 

61. Pezzatini S, Solito R, Morbidelli L, Lamponi S, Boanini E, Bigi A, et al. The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions. J Biomed Mater Res Part A. 2006;76:656-63.
http://dx.doi.org/10.1002/jbm.a.30524

 

 

 

62. Pezzatini S, Morbidelli L, Solito R, Paccagnini E, Boanini E, Bigi A, et al. Nanostructured HA crystals up-regulate FGF-2 expression and activity in microvascular endothelium promoting angiogenesis. Bone. 2007;41:523-34.
http://dx.doi.org/10.1016/j.bone.2007.06.016

 

 

 

63. Kwak HB, Kim JY, Kim KJ, Choi MK, Kim JJ, Kim KM, et al. Risedronate directly inhibits osteoclast differentiation and inflammatory bone loss. Biol Pharm Bull. 2009;32:1193-8.
http://dx.doi.org/10.1248/bpb.32.1193

 

 

 

64. Or C, Cui J, Matsubara J, Forooghian F. Pro-inflammatory and anti-angiogenic effects of bisphosphonates on human cultured retinal pigment epithelial cells. Br J Ophthalmol. 2013;97:1074-8.
http://dx.doi.org/10.1136/bjophthalmol-2013-303355

 

 

 

65. Ribeiro V, Garcia M, Oliveira R, Gomes PS, Colao B, Fernandes MH. Bisphosphonates induce the osteogenic gene expression in co-cultured human endothelial and mesenchymal stem cells. J Cell Mol Med. 2014;18:27-37.
http://dx.doi.org/10.1111/jcmm.12154

 

 

 

66. Ayukawa Y, Okamura A, Koyano K. Simvastatin promotes osteogenesis around titanium implants. Clin Oral Imp Res. 2004;15:346-50.
http://dx.doi.org/10.1046/j.1600-0501.2003.01015.x

 

 

 

67. Ayukawa Y, Yasukawa E, Moriyama Y, Ogino Y, Wada H, Atsuta I, et al. Local application of statin promotes bone repair through the suppression of osteoclasts and the enhancement of osteoblasts at bone-healing sites in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:336-42.
http://dx.doi.org/10.1016/j.tripleo.2008.07.013

 

 

 

68. Hamelin BA, Turgeon J. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci. 1998;19:26-37.
http://dx.doi.org/10.1016/S0165-6147(97)01147-4

 

 

 

69. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286:1946-9.
http://dx.doi.org/10.1126/science.286.5446.1946

 

 

 

70. Min KS, Lee YM, Hong SO, Kim EC. Simvastatin promotes odontoblastic differentiation and expression of angiogenic factors via heme oxygenase-1 in primary cultured human dental pulp cells. J Endod. 2010;36:447-52.
http://dx.doi.org/10.1016/j.joen.2009.11.021

 

 

 

71. Herr Y, Woo J, Kwon Y, Park J, Heo S, Chung J. Implant surface conditioning with Tetracycline-HCl: A SEM study. Key Eng Mater. 2008;361:849-52.
http://dx.doi.org/10.4028/www.scientific.net/KEM.361-363.849

 

 

 

72. Persson L, Ericsson I, Berglundh T, Lindhe J. Osseintegration following treatment of peri-implantitis and replacement of implant components. J Clin Periodontol. 2001;28:258-63.
http://dx.doi.org/10.1034/j.1600-051x.2001.028003258.x

 

 

 

73. Lee JH, Moon SK, Kim KM, Kim KN. Modification of TiO2 nanotube surfaces by electro-spray deposition of amoxicillin combined with PLGA for bactericidal effects at surgical implantation sites. Acta Odontol Scandinavia. 2013;71:168-74.
http://dx.doi.org/10.3109/00016357.2011.654256

 

 

 

74. He L, Marneros AG. Doxycycline inhibits polarization of macrophages to the proangiogenic M2-type and subsequent neovascularization. J Biol Chem. 2014;289:8019-28.
http://dx.doi.org/10.1074/jbc.M113.535765

 

 

 

75. Zhang L, Yan J, Yin Z, Tang C, Guo Y, Li D, et al. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int J Nanomed. 2014;9:3027.

 

 

 

76. Meghari S, Rolain JM, Grau GE, Platt E, Barrassi L, Mge JL, et al. Antiangiogenic effect of erythromycin: an in vitro model of Bartonella quintana infection. J Infect Dis. 2006;193:380-6.
http://dx.doi.org/10.1086/499276

 

 

 

77. Bezwada P, Clark LA, Schneider S. Intrinsic cytotoxic effects of fluoroquinolones on human corneal keratocytes and endothelial cells. Curr Med Res Opin. 2007;24:419-24.
http://dx.doi.org/10.1185/030079908X261005

 

 

 

78. Galley HF, Dhillon JK, Paterson RL, Webster NR. Effect of ciprofloxacin on the activation of the transcription factors nuclear factor B, activator protein-1 and nuclear factor interleukin-6, and interleukin-6 and interleukin-8 mRNA expression in a human endothelial cell line. Clin Sci. 2000;99:405-10.
http://dx.doi.org/10.1042/cs0990405

 

 

 

79. Michalska M, Palatyńska-Ulatowska A, Palatyński A, Mirowski M, Kaplińska K, Nawrot-Modranka J, et al. Influence of antibiotic therapy on the level of selected angiogenic factors in patients with benign gynecologic tumors-preliminary report. Pharmazie. 2011;66:619-22.

 

 

 

80. Jung HJ, Seo I, Jha BK, Suh SI, Suh MH, Baek WK. Minocycline inhibits angiogenesis in vitro through the translational suppression of HIF-1α. Arch Biochem Biophys. 2014;545:74-82.
http://dx.doi.org/10.1016/j.abb.2013.12.023

 

 

 

81. Li CH, Liao PL, Yang YT, Huang SH, Lin CH, Cheng YW, et al. Minocycline accelerates hypoxia-inducible factor-1 alpha degradation and inhibits hypoxia-induced neovasculogenesis through prolyl hydroxylase, von Hippel-Lindau-dependent pathway. Arch toxicol. 2014;88:659-71.

 

 

 

82. Liu Y, Enggist L, Kuffer AF, Buser D, Hunziker EB. The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration. Biomaterials. 2007;28:2677-86.
http://dx.doi.org/10.1016/j.biomaterials.2007.02.003

 

 

 

83. Hossain M, Irwin R, Baumann M, McCabe L. Hepatocyte growth factor (HGF) adsorption kinetics and enhancement of osteoblast differentiation on hydroxyapatite surfaces. Biomaterials. 2005;26:2595-602.
http://dx.doi.org/10.1016/j.biomaterials.2004.07.051

 

 

 

84. Elkarargy A. Biological functionalization of dental implants with fibronectin: a scanning electron microscopic study. Int J Health Sci (Qassim). 2014;8:57-66.
http://dx.doi.org/10.12816/0006072

 

 

 

85. Schliephake H, Strecker N, Fšrster A, Schwenzer B, Reichert J, Scharnweber D. Angiogenic functionalisation of titanium surfaces using nano-anchored VEGF–an in vitro study. Eur Cell Mater. 2012;23:161-9.

 

 

 

86. Tan XW, Lakshminarayanan R, Liu SP, Goh E, Tan D, Beuerman RW, et al. Dual functionalization of titanium with vascular endothelial growth factor and β-defensin analog for potential application in keratoprosthesis. J Biomed Mater Res Part B: Appl Biomater. 2012;100:2090-100.
http://dx.doi.org/10.1002/jbm.b.32774

 

 

 

87. Poh CK, Shi Z, Lim TY, Neoh KG, Wang W. The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials. 2010;31:1578-85.
http://dx.doi.org/10.1016/j.biomaterials.2009.11.042