Saghiri MA,
Asatourian A, Garcia-Godoy F, Sheibani N. The role of angiogenesis in implant
dentistry part I: Review of titanium alloys, surface characteristics and
treatments. Med Oral
Patol Oral Cir Bucal. 2016 Jul 1;21 (4):e514-25.
doi:10.4317/medoral.21199
http://dx.doi.org/doi:10.4317/medoral.21199
|
1.
Williams D. Titanium and titanium alloys. CRC Press, Inc, Biocompatibility of
Clin Imp Mater 1981;1:9-44. |
||||||
|
|
||||||
|
2.
Saghiri MA, Ghasemi M, Moayer AR, Sheibani N, Garcia-Godoy F, Asatourian A,
et al. A novel method to evaluate the neurocompatibility of dental implants.
Int J Oral Maxillofac Imp. 2013;29:41-50. |
||||||
|
|
||||||
|
3.
Brnemark PI. Osseointegration and its experimental background. J Prosthet
Dent. 1983;50:399-410. |
||||||
|
|
||||||
|
4.
Le Guhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of
titanium dental implants for rapid osseointegration. Dent mater.
2007;23:844-54. |
||||||
|
|
||||||
|
5.
Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, et al.
Response of MG63 osteoblast-like cells to titanium and titanium alloy is
dependent on surface roughness and composition. Biomaterials. 1998;19:2219-32. |
||||||
|
|
||||||
|
6.
Schwartz Z, Raz P, Zhao G, Barak Y, Tauber M, Yao H, et al. Effect of
micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro
and in vivo. J Bone Joint Surg. 2008;90:2485-98. |
||||||
|
|
||||||
|
7.
Boyan BD, Schwartz Z, Lohmann CH, Sylvia VL, Cochran DL, Dean DD, et al.
Pretreatment of bone with osteoclasts affects phenotypic expression of
osteoblast-like cells. J Orthop Res. 2003;21:638-47. |
||||||
|
|
||||||
|
8.
Vlacic-Zischke J, Hamlet S, Friis T, Tonetti M, Ivanovski S. The influence of
surface microroughness and hydrophilicity of titanium on the up-regulation of
TGFβ/BMP signalling in osteoblasts. Biomaterials. 2011;32:665-71. |
||||||
|
|
||||||
|
9.
Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, et al.
Surface roughness modulates the local production of growth factors and
cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res. 1996;32:55-63. |
||||||
|
|
||||||
|
10.
Saghiri MA, Asatourian A, Sheibani N. Angiogenesis in regenerative dentistry.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119:22. |
||||||
|
|
||||||
|
11.
Saghiri MA, Asatourian A, Sorenson CM, Sheibani N. Role of Angiogenesis in
Endodontics: Contributions of Stem Cells and Proangiogenic and Antiangiogenic
Factors to Dental Pulp Regeneration. J Endod. 2015;41:797-803. |
||||||
|
|
||||||
|
12.
Nobuto T, Suwa F, Kono T, Taguchi Y, Takahashi T, Kanemura N, et al.
Microvascular response in the periosteum following mucoperiosteal flap
surgery in dogs: angiogenesis and bone resorption and formation. J
Periodontol. 2005;76:1346-53. |
||||||
|
|
||||||
|
13.
Abshagen K, Schrodi I, Gerber T, Vollmar B. In vivo analysis of
biocompatibility and vascularization of the synthetic bone grafting substitute
NanoBone¨. J Biomed Mater Res Part A. 2009;91:557-66. |
||||||
|
|
||||||
|
14.
Shi B, Andrukhov O, Berner S, Schedle A, Rausch-Fan X. The angiogenic
behaviors of human umbilical vein endothelial cells (HUVEC) in co-culture
with osteoblast-like cells (MG-63) on different titanium surfaces. Dent
Mater. 2014;30:839-47. |
||||||
|
|
||||||
|
15.
Sautier JM, Nefussi JR, Forest N. Surface-reactive biomaterials in osteoblast
cultures: an ultrastructural study. Biomaterials. 1992;13:400-2. |
||||||
|
|
||||||
|
16.
Saghiri MA, Asgar K, Lotfi M, Karamifar K, Saghiri AM, Neelakantan P, et al.
Back-scattered and secondary electron images of scanning electron microscopy
in dentistry: a new method for surface analysis. Acta Odontol Scandinavia.
2012;70:603-9. |
||||||
|
|
||||||
|
17.
Lee MC, Yoshino F, Shoji H, Takahashi S, Todoki K, Shimada S, et al.
Characterization by electron spin resonance spectroscopy of reactive oxygen
species generated by titanium dioxide and hydrogen peroxide. J Dent Res.
2005;84:178-82. |
||||||
|
|
||||||
|
18.
Hallab NJ, Jacobs JJ, Skipor A, Black J, Mikecz K, Galante JO. Systemic
metal-protein binding associated with total joint replacement arthroplasty. J
Biomed Mater Res. 2000;49:353-61. |
||||||
|
|
||||||
|
19.
Mentus SV. Oxygen reduction on anodically formed titanium dioxide.
Electrochim acta. 2004;50:27-32. |
||||||
|
|
||||||
|
20.
Irwin DC, McCord JM, Nozik-Grayck E, Beckly G, Foreman B, Sullivan T, et al.
A potential role for reactive oxygen species and the HIF-1α–VEGF
pathway in hypoxia-induced pulmonary vascular leak. Free Radic Biol Med.
2009;47:55-61. |
||||||
|
|
||||||
|
21.
Gough D, Cotter T. Hydrogen peroxide: a Jekyll and Hyde signalling molecule.
Cell Death Dis. 2011;2:e213. |
||||||
|
|
||||||
|
22.
Tsaryk R, Kalbacova M, Hempel U, Scharnweber D, Unger RE, Dieter P, et al.
Response of human endothelial cells to oxidative stress on Ti6Al4V alloy.
Biomaterials. 2007;28:806-13. |
||||||
|
|
||||||
|
23.
Degidi M, Artese L, Scarano A, Perrotti V, Gehrke P, Piattelli A.
Inflammatory infiltrate, microvessel density, nitric oxide synthase
expression, vascular endothelial growth factor expression, and proliferative
activity in peri-implant soft tissues around titanium and zirconium oxide
healing caps. J Periodontol. 2006;77:73-80. |
||||||
|
|
||||||
|
24.
Zhang Z, Huang C, Li J, Leonard SS, Lanciotti R, Butterworth L, et al.
Vanadate-induced cell growth regulation and the role of reactive oxygen
species. Arch Biochem Biophys. 2001;392:311-20. |
||||||
|
|
||||||
|
25.
Zhang Z, Leonard SS, Huang C, Vallyathan V, Castranova V, Shi X. Role of
reactive oxygen species and MAPKs in vanadate-induced G(2)/M phase arrest.
Free Radic Biol Med. 2003;34:1333-42. |
||||||
|
|
||||||
|
26.
Saghiri MA, Orangi J, Tanideh N, Janghorban K, Sheibani N. Effect of
Endodontic Cement on Bone Mineral Density Using Serial Dual-energy X-ray
Absorptiometry. J Endod. 2014;40:648-51. |
||||||
|
|
||||||
|
27.
Sul YT, Johansson C, Wennerberg A, Cho LR, Chang BS, Albrektsson T. Optimum
surface properties of oxidized implants for reinforcement of
osseointegration: surface chemistry, oxide thickness, porosity, roughness,
and crystal structure. Int J Oral Maxillofac Implants. 2004;20:349-59. |
||||||
|
|
||||||
|
28.
Cochran DL, Buser D, Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, et
al. The use of reduced healing times on ITI implants with a sandblasted and
acid-etched (SLA) surface: early results from clinical trials on ITI SLA
implants. Clin Oral Implants Res. 2002;13:144-53. |
||||||
|
|
||||||
|
29.
Anil S, Anand P, Alghamdi H, Jansen J. Dental implant surface enhancement and
osseointegration. Implant Dentistry: A Rapidly Evolving Practice New York.
InTech. 2011;83:108. |
||||||
|
|
||||||
|
30.
Eriksson C, Lausmaa J, Nygren H. Interactions between human whole blood and
modified TiO2-surfaces: influence of surface topography and oxide thickness
on leukocyte adhesion and activation. Biomaterials. 2001;22:1987-96. |
||||||
|
|
||||||
|
31.
Dahiya V, Shukla P, Gupta S. Surface topography of dental implants: A review.
J Dent Imp. 2014;4:66. |
||||||
|
|
||||||
|
32.
Shibli JA, Grassi S, Cristina de Figueiredo L, Feres M, Marcantonio E, Iezzi
G, et al. Influence of implant surface topography on early osseointegration:
a histological study in human jaws. J Biomed Mater Res Part B. Appl
Biomateri. 2007;80:377-85. |
||||||
|
|
||||||
|
33.
Refai AK, Textor M, Brunette DM, Waterfield JD. Effect of titanium surface
topography on macrophage activation and secretion of proinflammatory
cytokines and chemokines. J Biomed Mater Res Part A. 2004;70:194-205. |
||||||
|
|
||||||
|
34.
Raines AL, Olivares-Navarrete R, Wieland M, Cochran DL, Schwartz Z, Boyan BD.
Regulation of angiogenesis during osseointegration by titanium surface
microstructure and energy. Biomaterials. 2010;31:4909-17. |
||||||
|
|
||||||
|
35.
Olivares-Navarrete R, Hyzy S, Gittens IRA, Schneider JM, Haithcock DA,
Ullrich PF, et al. Rough titanium alloys regulate osteoblast production of angiogenic
factors. Spine J. 2013;13:1563-70. |
||||||
|
|
||||||
|
36.
Vandamme K, Naert I, Vander Sloten J, Puers R, Duyck J. Effect of implant
surface roughness and loading on peri-implant bone formation. J Periodontol.
2007;79:150-7. |
||||||
|
|
||||||
|
37.
Saghiri MA, Asgar K, Lotfi M, Garcia-Godoy F. Nanomodification of mineral
trioxide aggregate for enhanced physiochemical properties. Int Endod J.
2012;45:979-88. |
||||||
|
|
||||||
|
38.
Brett P, Harle J, Salih V, Mihoc R, Olsen I, Jones F, et al. Roughness
response genes in osteoblasts. Bone. 2004;35:124-33. |
||||||
|
|
||||||
|
39.
Webster TJ, Siegel RW, Bizios R. Osteoblast adhesion on nanophase ceramics.
Biomaterials. 1999;20:1221-7. |
||||||
|
|
||||||
|
40.
Dalby MJ, Andar A, Nag A, Affrossman S, Tare R, McFarlane S, et al. Genomic
expression of mesenchymal stem cells to altered nanoscale topographies. J
Royal Soc Interface. 2008;5:1055-65. |
||||||
|
|
||||||
|
41.
Mendona G, Mendonca D, Aragao FJ, Cooper LF. Advancing dental implant
surface technology–from micron-to nanotopography. Biomaterials.
2008;29:3822-35. |
||||||
|
|
||||||
|
42.
Peng L, Eltgroth ML, LaTempa TJ, Grimes CA, Desai TA. The effect of TiO2
nanotubes on endothelial function and smooth muscle proliferation.
Biomaterials. 2009;30:1268-72. |
||||||
|
|
||||||
|
43.
Jo DH, Kim JH, Son JG, Song NW, Kim YI, Yu YS, et al. Anti-angiogenic effect
of bare titanium dioxide nanoparticles on pathologic neovascularization
without unbearable toxicity. Nanomedicine. 2014;10:1109-17. |
||||||
|
|
||||||
|
44.
Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, et al. A
review on the wettability of dental implant surfaces I: Theoretical and
experimental aspects. Acta biomater. 2014;10:2894-906. |
||||||
|
|
||||||
|
45.
Elias CN, Oshida Y, Lima JHC, Muller CA. Relationship between surface
properties (roughness, wettability and morphology) of titanium and dental
implant removal torque. J Mech Behav Biomed Mater. 2008;1:234-42. |
||||||
|
|
||||||
|
46.
van Wachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG.
Interaction of cultured human endothelial cells with polymeric surfaces of
different wettabilities. Biomaterials. 1985;6:403-8. |
||||||
|
|
||||||
|
47.
Shi B, Andrukhov O, Berner S, Schedle A, Rausch-Fan X. The angiogenic
behaviors of human umbilical vein endothelial cells (HUVEC) in co-culture
with osteoblast-like cells (MG-63) on different titanium surfaces. Dent
Mater. 2014;30:839-47. |
||||||
|
|
||||||
|
48.
Ziebart T, Schnell A, Walter C, Kmmerer PW, Pabst A, Lehmann KM, et al.
Interactions between endothelial progenitor cells (EPC) and titanium implant
surfaces. Clin Oral Investig. 2013;17:301-9. |
||||||
|
|
||||||
|
49.
Donos N, Hamlet S, Lang N, Salvi G, Huynh-Ba G, Bosshardt D, et al. Gene
expression profile of osseointegration of a hydrophilic compared with a
hydrophobic microrough implant surface. Clin Oral Imp Res. 2011;22:365-72. |
||||||
|
|
||||||
|
50.
Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, et al.
Effects of surface hydrophilicity and microtopography on early stages of soft
and hard tissue integration at non-submerged titanium implants: an
immunohistochemical study in dogs. J Periodontol. 2007;78:2171-84. |
||||||
51.
Ren N, Li J, Qiu J, Sang Y, Jiang H, Boughton RI, et al. Nanostructured
titanate with different metal ions on the surface of metallic titanium: a
facile approach for regulation of rBMSCs fate on titanium implants. Small.
2014;10:3169-80. |
|
||||||
|
|
||||||
52.
Mamalis A, Silvestros S. Modified Titanium Surfaces Alter Osteogenic
Differentiation: A Comparative Microarray-Based Analysis of Human Mesenchymal
Cell Response to Commercial Titanium Surfaces. J Oral Implantol.
2013;39:591-601. |
|
||||||
|
|
||||||
53.
Mamalis AA, Silvestros SS. Analysis of osteoblastic gene expression in the
early human mesenchymal cell response to a chemically modified implant
surface: an in vitro study. Clin Oral Imp Res. 2011;22:530-7. |
|
||||||
|
|
||||||
54.
An N, Schedle A, Wieland M, Andrukhov O, Matejka M, Rausch-Fan X.
Proliferation, behavior, and cytokine gene expression of human umbilical
vascular endothelial cells in response to different titanium surfaces. J
Biomed Mater Res Part A. 2010;93:364-72. |
|
||||||
|
|
||||||
55.
Al-Nawas B, Wagner W, Grtz KA. Insertion torque and resonance frequency
analysis of dental implant systems in an animal model with loaded implants.
Int J Oral Maxillofac Implants. 2006;21:726-32. |
|
||||||
|
|
||||||
56.
Kirsch A. Plasma-sprayed titanium-I.M.Z. implant. J Oral Implantol.
1986;12:494-7. |
|
||||||
|
|
||||||
57.
Clark PA, Rodriguez A, Sumner DR, Hussain MA, Mao JJ. Modulation of bone
ingrowth of rabbit femur titanium implants by in vivo axial micromechanical loading.
J Appl Physiol. 2005;98:1922-9. |
|
||||||
|
|
||||||
58.
Degidi M, Artese L, Rubini C, Perrotti V, Iezzi G, Piattelli A. Microvessel
density and vascular endothelial growth factor expression in sinus
augmentation using Bio-Oss¨. Oral Dis. 2006;12:469-75. |
|
||||||
|
|
||||||
59.
Chen Y, Wang J, Zhu XD, Tang ZR, Yang X, Tan YF, et al. Enhanced effect of
β-tricalcium phosphate phase on neovascularization of porous calcium
phosphate ceramics: in vitro and in vivo evidence. Acta Biomater.
2015;11:435-48. |
|
||||||
|
|
||||||
60.
Canuto R, Pol R, Martinasso G, Muzio G, Gallesio G, Mozzati M. Hydroxyapatite
paste Ostim¨, without elevation of full-thickness flaps, improves alveolar
healing stimulating BMP-and VEGF-mediated signal pathways: an experimental
study in humans. Clin Oral Imp Res. 2013;24:42-8. |
|
||||||
|
|
||||||
61.
Pezzatini S, Solito R, Morbidelli L, Lamponi S, Boanini E, Bigi A, et al. The
effect of hydroxyapatite nanocrystals on microvascular endothelial cell
viability and functions. J Biomed Mater Res Part A. 2006;76:656-63. |
|
||||||
|
|
||||||
62.
Pezzatini S, Morbidelli L, Solito R, Paccagnini E, Boanini E, Bigi A, et al.
Nanostructured HA crystals up-regulate FGF-2 expression and activity in
microvascular endothelium promoting angiogenesis. Bone. 2007;41:523-34. |
|
||||||
|
|
||||||
63.
Kwak HB, Kim JY, Kim KJ, Choi MK, Kim JJ, Kim KM, et al. Risedronate directly
inhibits osteoclast differentiation and inflammatory bone loss. Biol Pharm
Bull. 2009;32:1193-8. |
|
||||||
|
|
||||||
64.
Or C, Cui J, Matsubara J, Forooghian F. Pro-inflammatory and anti-angiogenic
effects of bisphosphonates on human cultured retinal pigment epithelial
cells. Br J Ophthalmol. 2013;97:1074-8. |
|
||||||
|
|
||||||
65.
Ribeiro V, Garcia M, Oliveira R, Gomes PS, Colao B, Fernandes MH.
Bisphosphonates induce the osteogenic gene expression in co-cultured human
endothelial and mesenchymal stem cells. J Cell Mol Med. 2014;18:27-37. |
|
||||||
|
|
||||||
66.
Ayukawa Y, Okamura A, Koyano K. Simvastatin promotes osteogenesis around
titanium implants. Clin Oral Imp Res. 2004;15:346-50. |
|
||||||
|
|
||||||
67.
Ayukawa Y, Yasukawa E, Moriyama Y, Ogino Y, Wada H, Atsuta I, et al. Local
application of statin promotes bone repair through the suppression of
osteoclasts and the enhancement of osteoblasts at bone-healing sites in rats.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:336-42. |
|
||||||
|
|
||||||
68.
Hamelin BA, Turgeon J. Hydrophilicity/lipophilicity: relevance for the
pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends
Pharmacol Sci. 1998;19:26-37. |
|
||||||
|
|
||||||
69.
Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation
of bone formation in vitro and in rodents by statins. Science.
1999;286:1946-9. |
|
||||||
|
|
||||||
70.
Min KS, Lee YM, Hong SO, Kim EC. Simvastatin promotes odontoblastic
differentiation and expression of angiogenic factors via heme oxygenase-1 in
primary cultured human dental pulp cells. J Endod. 2010;36:447-52. |
|
||||||
|
|
||||||
71.
Herr Y, Woo J, Kwon Y, Park J, Heo S, Chung J. Implant surface conditioning
with Tetracycline-HCl: A SEM study. Key Eng Mater. 2008;361:849-52. |
|
||||||
|
|
||||||
72.
Persson L, Ericsson I, Berglundh T, Lindhe J. Osseintegration following
treatment of peri-implantitis and replacement of implant components. J Clin
Periodontol. 2001;28:258-63. |
|
||||||
|
|
||||||
73.
Lee JH, Moon SK, Kim KM, Kim KN. Modification of TiO2 nanotube surfaces by
electro-spray deposition of amoxicillin combined with PLGA for bactericidal
effects at surgical implantation sites. Acta Odontol Scandinavia.
2013;71:168-74. |
|
||||||
|
|
||||||
74.
He L, Marneros AG. Doxycycline inhibits polarization of macrophages to the
proangiogenic M2-type and subsequent neovascularization. J Biol Chem.
2014;289:8019-28. |
|
||||||
|
|
||||||
75.
Zhang L, Yan J, Yin Z, Tang C, Guo Y, Li D, et al. Electrospun
vancomycin-loaded coating on titanium implants for the prevention of
implant-associated infections. Int J Nanomed. 2014;9:3027. |
|
||||||
|
|
||||||
76.
Meghari S, Rolain JM, Grau GE, Platt E, Barrassi L, Mge JL, et al.
Antiangiogenic effect of erythromycin: an in vitro model of Bartonella
quintana infection. J Infect Dis. 2006;193:380-6. |
|
||||||
|
|
||||||
77.
Bezwada P, Clark LA, Schneider S. Intrinsic cytotoxic effects of
fluoroquinolones on human corneal keratocytes and endothelial cells. Curr Med
Res Opin. 2007;24:419-24. |
|
||||||
|
|
||||||
78.
Galley HF, Dhillon JK, Paterson RL, Webster NR. Effect of ciprofloxacin on
the activation of the transcription factors nuclear factor B, activator
protein-1 and nuclear factor interleukin-6, and interleukin-6 and
interleukin-8 mRNA expression in a human endothelial cell line. Clin Sci.
2000;99:405-10. |
|
||||||
|
|
||||||
79.
Michalska M, Palatyńska-Ulatowska A, Palatyński A, Mirowski M,
Kaplińska K, Nawrot-Modranka J, et al. Influence of antibiotic therapy
on the level of selected angiogenic factors in patients with benign
gynecologic tumors-preliminary report. Pharmazie. 2011;66:619-22. |
|
||||||
|
|
||||||
80.
Jung HJ, Seo I, Jha BK, Suh SI, Suh MH, Baek WK. Minocycline inhibits
angiogenesis in vitro through the translational suppression of HIF-1α.
Arch Biochem Biophys. 2014;545:74-82. |
|
||||||
|
|
||||||
81.
Li CH, Liao PL, Yang YT, Huang SH, Lin CH, Cheng YW, et al. Minocycline
accelerates hypoxia-inducible factor-1 alpha degradation and inhibits
hypoxia-induced neovasculogenesis through prolyl hydroxylase, von
Hippel-Lindau-dependent pathway. Arch toxicol. 2014;88:659-71. |
|
||||||
|
|
||||||
82.
Liu Y, Enggist L, Kuffer AF, Buser D, Hunziker EB. The influence of BMP-2 and
its mode of delivery on the osteoconductivity of implant surfaces during the
early phase of osseointegration. Biomaterials. 2007;28:2677-86. |
|
||||||
|
|
||||||
83.
Hossain M, Irwin R, Baumann M, McCabe L. Hepatocyte growth factor (HGF)
adsorption kinetics and enhancement of osteoblast differentiation on
hydroxyapatite surfaces. Biomaterials. 2005;26:2595-602. |
|
||||||
|
|
||||||
84.
Elkarargy A. Biological functionalization of dental implants with
fibronectin: a scanning electron microscopic study. Int J Health Sci
(Qassim). 2014;8:57-66. |
|
||||||
|
|
||||||
85.
Schliephake H, Strecker N, Frster A, Schwenzer B, Reichert J, Scharnweber D.
Angiogenic functionalisation of titanium surfaces using nano-anchored
VEGF–an in vitro study. Eur Cell Mater. 2012;23:161-9. |
|
||||||
|
|
||||||
86.
Tan XW, Lakshminarayanan R, Liu SP, Goh E, Tan D, Beuerman RW, et al. Dual
functionalization of titanium with vascular endothelial growth factor and
β-defensin analog for potential application in keratoprosthesis. J
Biomed Mater Res Part B: Appl Biomater. 2012;100:2090-100. |
|
||||||
|
|
||||||
87.
Poh CK, Shi Z, Lim TY, Neoh KG, Wang W. The effect of VEGF functionalization
of titanium on endothelial cells in vitro. Biomaterials. 2010;31:1578-85. |
|
||||||
|
|||||||