Saghiri MA, Asatourian A, Garcia-Godoy F, Sheibani N. The role of angiogenesis in implant dentistry part II: The effect of bone-grafting and barrier membrane materials on angiogenesis. Med Oral Patol Oral Cir Bucal. 2016 Jul 1;21 (4):e526-37. 

 

 

doi:10.4317/medoral.21200

http://dx.doi.org/doi:10.4317/medoral.21200

 

 

1. Irinakis T, Tabesh M. Preserving the socket dimensions with bone grafting in single sites: an esthetic surgical approach when planning delayed implant placement. J Oral Implantol. 2007;33:156-63.
http://dx.doi.org/10.1563/0.824.1

 

2. Minabe M. A Critical Review of the Biologic Rationale for Guided Tissue Regeneration. J Periodontol. 1991;62:171-79.
http://dx.doi.org/10.1902/jop.1991.62.3.171

 

3. Becker W, Becker B, Handlesman M, Celletti R, Ochsenbein C, Hardwick R, et al. Bone formation at dehisced dental implant sites treated with implant augmentation material: a pilot study in dogs. Int J Periodontics Restorative Dent. 1990;10:92-101.

 

4. Gher ME, Quintero G, Assad D, Monaco E, Richardson A. Bone grafting and guided bone regeneration for immediate dental implants in humans. J Periodontol. 1994;65:881-91.
http://dx.doi.org/10.1902/jop.1994.65.9.881

 

5. Wang HL, Boyapati L. " PASS" principles for predictable bone regeneration. J Implant Dent. 2006;15:8-17.
http://dx.doi.org/10.1097/01.id.0000204762.39826.0f

 

6. Liu J, Kerns DG. Suppl 1: Mechanisms of Guided Bone Regeneration: A Review. J Open Dent. 2014;8:56-65.
http://dx.doi.org/10.2174/1874210601408010056

 

7. Saghiri MA, Asatourian A, Orangi J, Sheibani N. Functional role of inorganic trace elements in angiogenesis Part I:(N, Fe, Se, P, Au, and Ca). J Crit Rev Oncol Hematol. 2015;96:129-42.
http://dx.doi.org/10.1016/j.critrevonc.2015.05.010

 

8. Saghiri MA, Orangi J, Asatourian A, Sheibani N. Functional Role of Inorganic Trace Elements in Angiogenesis Part II:(Cr, Si, Zn, Cu, and S). J Crit Rev Oncol Hematol. 2015;96:143-55.
http://dx.doi.org/10.1016/j.critrevonc.2015.05.011

 

9. Saghiri MA, Orangi J, Asatourian A, Sorenson CM, Sheibani N. Functional role of inorganic trace elements in angiogenesis part III:(Ti, Li, Ce, As, Hg, Va, Nb and Pb). J Crit Rev Oncol Hematol. 2016;98:290-301.
http://dx.doi.org/10.1016/j.critrevonc.2015.10.004

 

10. Saghiri MA, Asatourian A, Sheibani N. Angiogenesis in regenerative dentistry. J Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119:22.
http://dx.doi.org/10.1016/j.oooo.2014.09.023

 

11. Saghiri MA, Asatourian A, Garcia-Godoy F, Sheibani N. The role of angiogenesis in implant dentistry part I: Review of titanium alloys, surface characteristics and treatments. Med Oral Patol Oral Cir Bucal. 2016;21:514-25
http://dx.doi.org/10.4317/medoral.21199

 

12. Saghiri MA, Asatourian A, Garcia-Godoy F, Sheibani N. Effect of Biomaterial on Angiogenesis during Vital pulp therapy. Dental Materail J. Epub ahead of print. 2016.

 

13. Buser D. 20 years of guided bone regeneration in implant dentistry. 2nd ed. Chicago: Quintessence Pub Co. 2009. p. 1-231.

 

14. Dahlin C, Sennerby L, Lekholm U, Linde A, Nyman S. Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants. 1989;4:19-25.

 

15. Becker W, Becker BE. Guided tissue regeneration for implants placed into extraction sockets and for implant dehiscences: surgical techniques and case report. Int J Periodontics Restorative Dent. 1990;10:376-91.

 

16. Misch CE, Dietsh F. Bone-grafting materials in implant dentistry. Implant Dent. 1993;2:158-67.
http://dx.doi.org/10.1097/00008505-199309000-00003

 

17. Saghiri MA, Orangi J, Tanideh N, Asatourian A, Janghorban K, Garcia-Godoy F, et al. Repair of bone defect by nano-modified white mineral trioxide aggregates in rabbit: A histopathological study. J Med Oral Patol Oral Cir Bucal. 2015;20:e525-31.
http://dx.doi.org/10.4317/medoral.20290

 

18. Rose LF. Periodontics: medicine, surgery, and implants. Mosby; New York. 2004. p. 1-1008.

 

19. Barboza E, Caœla A, Machado F. Potential of recombinant human bone morphogenetic protein-2 in bone regeneration. Implant Dent. 1999;8:360-7.
http://dx.doi.org/10.1097/00008505-199904000-00006

 

20. Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A. 1990;87:2220-4.
http://dx.doi.org/10.1073/pnas.87.6.2220

 

21. Toriumi DM, Kotler HS, Luxenberg DP, Holtrop ME, Wang EA. Mandibular reconstruction with a recombinant bone-inducing factor. Functional, histologic, and biomechanical evaluation. Arch Otolaryngol Head Neck Surg. 1991;117:1101-12.
http://dx.doi.org/10.1001/archotol.1991.01870220049009

 

22. Dai Z, Shu Y, Wan C, Wu C. Effects of pH and thermally sensitive hybrid gels on osteogenic differentiation of mesenchymal stem cells. J Biomater Appl. 2015;29:1272-83.
http://dx.doi.org/10.1177/0885328214557904

 

23. Hass R, Otte A. Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. J Cell Commun Signal. 2012;10:26.
http://dx.doi.org/10.1186/1478-811X-10-26

 

24. Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L, et al. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. J Mol Ther. 2009;17:183-90.
http://dx.doi.org/10.1038/mt.2008.229

 

25. Davani S, Marandin A, Mersin N, Royer B, Kantelip B, HervŽ P, et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation. 2003;108 Suppl 1:253-8.
http://dx.doi.org/10.1161/01.cir.0000089186.09692.fa

 

26. Kinnaird T, Stabile E, Burnett M, Shou M, Lee C, Barr S, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. J Circulation. 2004;109:1543-9.
http://dx.doi.org/10.1161/01.CIR.0000124062.31102.57

 

27. Hsiao ST, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, Lim SY, et al. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. J Stem Cells Dev. 2012;21:2189-203.
http://dx.doi.org/10.1089/scd.2011.0674

 

28. Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. J Cancer Lett. 2012;315:28-37.
http://dx.doi.org/10.1016/j.canlet.2011.10.002

 

29. Oswald J, Boxberger S, J¿rgensen B, Feldmann S, Ehninger G, BornhŠuser M, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. J Stem Cells. 2004;22:377-84.
http://dx.doi.org/10.1634/stemcells.22-3-377

 

30. Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, et al. Angiogenic factors in bone local environment. J Cytokine Growth Factor Rev. 2013;24:297-310.
http://dx.doi.org/10.1016/j.cytogfr.2013.03.008

 

31. Prasadam I, Zhou Y, Du Z, Chen J, Crawford R, Xiao Y. Osteocyte-induced angiogenesis via VEGF–MAPK-dependent pathways in endothelial cells. J Mol Cell Biochem. 2014;386:15-25.
http://dx.doi.org/10.1007/s11010-013-1840-2

 

32. Wang Y, Wan C, Gilbert SR, Clemens TL. Oxygen sensing and osteogenesis. J Ann N Y Acad Sci. 2007;1117:1-11.
http://dx.doi.org/10.1196/annals.1402.049

 

33. Brandi ML, Crescioli C, Tanini A, Frediani U, Agnusdei D, Gennari C. Bone endothelial cells as estrogen targets. Calcif Tissue Int. 1993;53:312-7.
http://dx.doi.org/10.1007/BF01351835

 

34. Streeten EA, Brandi ML. Biology of bone endothelial cells. Bone Miner. 1990;10:85-94.
http://dx.doi.org/10.1016/0169-6009(90)90084-S

 

35. Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008;15:100-14.

 

36. Bouletreau PJ, Warren SM, Spector JA, Peled ZM, Gerrets RP, Greenwald JA, et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg. 2002;109:2384-97.
http://dx.doi.org/10.1097/00006534-200206000-00033

 

37. Mellonig JT, Prewett AB, Moyer MP. HIV inactivation in a bone allograft. J Periodontol. 1992;63:979-83.
http://dx.doi.org/10.1902/jop.1992.63.12.979

 

38. Schoepf C. The Tutoplast¨ Process: a review of efficacy. Zimmer Dental. 2008;17:40-50.

 

39. Mellonig JT, Bowers GM, Bailey RC. Comparison of Bone Graft Materials: Part I. New Bone Formation With Autografts and Allografts Determined by Strontium-85. J Periodontol. 1981;52:291-6.
http://dx.doi.org/10.1902/jop.1981.52.6.291

 

40. Larsen M, Willems WF, Pelzer M, Friedrich PF, Dadsetan M, Bishop AT. Fibroblast growth factor-2 and vascular endothelial growth factor mediated augmentation of angiogenesis and bone formation in vascularized bone allotransplants. J Microsurgery. 2014;34:301-7.
http://dx.doi.org/10.1002/micr.22221

 

41. Moreira DC, S‡ CN, Andrade M, B—rio SCB, de Almeida RS, Pithon MM, et al. Angiogenesis and osteogenesis at incorporation process of onlay bone graft. J Oral Maxillofac Surg. 2013;71:2048-57.
http://dx.doi.org/10.1016/j.joms.2013.06.215

 

42. Nevins ML, Reynolds MA. Tissue engineering with recombinant human platelet-derived growth factor BB for implant site development. Compend Contin Educ Dent. 2011;32:20-7.

 

43. Rosen PS, Toscano N, Holzclaw D, Reynolds MA. A retrospective consecutive case series using mineralized allograft combined with recombinant human platelet-derived growth factor BB to treat moderate to severe osseous lesions. Int J Periodontics Restorative Dent. 2011;31:335-42.

 

44. Bo‘ck-Neto R, Artese L, Piattelli A, Shibli J, Perrotti V, Piccirilli M, et al. VEGF and MVD expression in sinus augmentation with autologous bone and several graft materials. J Oral Dis. 2009;15:148-54.
http://dx.doi.org/10.1111/j.1601-0825.2008.01502.x

 

45. Degidi M, Artese L, Rubini C, Perrotti V, Iezzi G, Piattelli A. Microvessel density and vascular endothelial growth factor expression in sinus augmentation using Bio-Oss. J Oral Dis. 2006;12:469-75.
http://dx.doi.org/10.1111/j.1601-0825.2006.01222.x

 

46. Canuto R, Pol R, Martinasso G, Muzio G, Gallesio G, Mozzati M. Hydroxyapatite paste Ostim, without elevation of full-thickness flaps, improves alveolar healing stimulating BMP-and VEGF-mediated signal pathways: an experimental study in humans. J Clin Oral Implants Res. 2013;24:42-8.
http://dx.doi.org/10.1111/j.1600-0501.2011.02363.x

 

47. Laschke MW, Witt K, Pohlemann T, Menger MD. Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization. J Biomed Mater Res B Appl Biomater. 2007;82:494-505.
http://dx.doi.org/10.1002/jbm.b.30755

 

48. Pezzatini S, Morbidelli L, Solito R, Paccagnini E, Boanini E, Bigi A, et al. Nanostructured HA crystals up-regulate FGF-2 expression and activity in microvascular endothelium promoting angiogenesis. J Bone. 2007;41:523-34.
http://dx.doi.org/10.1016/j.bone.2007.06.016

 

49. Pezzatini S, Solito R, Morbidelli L, Lamponi S, Boanini E, Bigi A, et al. The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions. J Biomed Mater Res A. 2006;76:656-63.
http://dx.doi.org/10.1002/jbm.a.30524

 

50. Nakamura M, Soya T, Hiratai R, Nagai A, Hashimoto K, Morita I, et al. Endothelial cell migration and morphogenesis on silk fibroin scaffolds containing hydroxyapatite electret. J Biomed Mater Res A. 2012;100:969-77.
http://dx.doi.org/10.1002/jbm.a.34046

 

51. Wu DJ, Hao AH, Zhang C, Cui FZ, Wang XW, Gao CZ, et al. [Promoting of angiogenesis and osteogenesis in radial critical bone defect regions of rabbits with nano-hydroxyapatite/collagen/PLA scaffolds plus endothelial progenitor cells]. Zhonghua Yi Xue Za Zhi. 2012;92:1630-4.

 

52. Castano O, Sachot N, Xuriguera E, Engel E, Planell JA, Park JH, et al. Angiogenesis in bone regeneration: tailored calcium release in hybrid fibrous scaffolds. J ACS Appl Mater Interfaces. 2014;6:7512-22.
http://dx.doi.org/10.1021/am500885v

 

53. Smiler D, Soltan M, Lee JW. A histomorphogenic analysis of bone grafts augmented with adult stem cells. J Implant Dent. 2007;16:42-53.
http://dx.doi.org/10.1097/ID.0b013e3180335934

 

54. Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81:672-6.
http://dx.doi.org/10.1097/00006534-198805000-00004

 

55. HŠmmerle CH, Jung RE. Bone augmentation by means of barrier membranes. Periodontol 2000. 2003;33:36-53.
http://dx.doi.org/10.1046/j.0906-6713.2003.03304.x

 

56. Owens KW, Yukna RA. Collagen membrane resorption in dogs: a comparative study. Implant Dent. 2001;10:49-58.
http://dx.doi.org/10.1097/00008505-200101000-00016

 

57. Bunyaratavej P, Wang HL. Collagen membranes: a review. J Periodontol. 2001;72:215-29.
http://dx.doi.org/10.1902/jop.2001.72.2.215

 

58. Rothamel D, Schwarz F, Sculean A, Herten M, Scherbaum W, Becker J. Biocompatibility of various collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells. J Clin Oral Implants Res. 2004;15:443-9.
http://dx.doi.org/10.1111/j.1600-0501.2004.01039.x

 

59. Postlethwaite AE, Seyer JM, Kang AH. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc Natl Acad Sci U S A. 1978;75:871-5.
http://dx.doi.org/10.1073/pnas.75.2.871

 

60. Locci P, Calvitti M, Belcastro S, Pugliese M, Guerra M, Marinucci L, et al. Phenotype expression of gingival fibroblasts cultured on membranes used in guided tissue regeneration. J Periodontol. 1997;68:857-63.
http://dx.doi.org/10.1902/jop.1997.68.9.857

 

61. Gunda V, Verma RK, Pawar SC, Sudhakar YA. Developments in purification methods for obtaining and evaluation of collagen derived endogenous angioinhibitors. J Protein Expr Purif. 2014;94:46-52.
http://dx.doi.org/10.1016/j.pep.2013.10.021

 

62. Shen X, Wan C, Ramaswamy G, Mavalli M, Wang Y, Duvall CL, et al. Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice. J Orthop Res. 2009;27:1298-305.
http://dx.doi.org/10.1002/jor.20886

 

63. Vargas GE, Durand LAH, Cadena V, Romero M, Mesones RV, Mačković M, et al. Effect of nano-sized bioactive glass particles on the angiogenic properties of collagen based composites. J Mater Sci Mater Med. 2013;24:1261-9.
http://dx.doi.org/10.1007/s10856-013-4892-7

 

64. Simion M, Rocchietta I, Fontana F, Dellavia C. Evaluation of a resorbable collagen matrix infused with rhPDGF-BB in peri-implant soft tissue augmentation: a preliminary report with 3.5 years of observation. Int J Periodontics Restorative Dent. 2012;32:273-83.

 

65. Hutmacher D, HŸrzeler MB, Schliephake H. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants. 1996;11:667-78.

 

66. Piattelli A, Scarano A, Coraggio F, Matarasso S. Early tissue reactions to polylactic acid resorbable membranes: a histological and histochemical study in rabbit. Biomaterials. 1998;19:889-96.
http://dx.doi.org/10.1016/S0142-9612(97)00173-7

 

67. Lang NP, HŠmmerle CH, BrŠgger U, Lehmann B, Nyman SR. Guided tissue regeneration in jawbone defects prior to implant placement. Clin Oral Implants Res. 1994;5:92-7.
http://dx.doi.org/10.1034/j.1600-0501.1994.050205.x

 

68. Azzarello J, Ihnat MA, Kropp BP, Warnke LA, Lin HK. Assessment of angiogenic properties of biomaterials using the chicken embryo chorioallantoic membrane assay. J Biomedical Materials. 2007;2:55-61.
http://dx.doi.org/10.1088/1748-6041/2/2/001

 

69. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A. 2003;65:489-97.
http://dx.doi.org/10.1002/jbm.a.10542

 

70. Shah NJ, Hyder MN, Quadir MA, Courchesne NM, Seeherman HJ, Nevins M, et al. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction. J Proc Natl Acad Sci U S A. 2014;111:12847-52.
http://dx.doi.org/10.1073/pnas.1408035111

 

71. Yonamine Y, Matsuyama T, Sonomura T, Takeuchi H, Furuichi Y, Uemura M, et al. Effectable application of vascular endothelial growth factor to critical sized rat calvaria defects. J Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:225-31.
http://dx.doi.org/10.1016/j.tripleo.2009.09.010

 

72. Ellis MJ, Chaudhuri JB. Poly (lactic-co-glycolic acid) hollow fibre membranes for use as a tissue engineering scaffold. J Biotechnol Bioeng. 2007;96:177-87.
http://dx.doi.org/10.1002/bit.21093

 

73. Miller N, Penaud J, Foliguet B, Membre H, Ambrosini P, Plombas M. Resorption rates of 2 commercially available bioresorbable membranes. J Clin Periodontol. 1996;23:1051-9.
http://dx.doi.org/10.1111/j.1600-051X.1996.tb01803.x

 

74. Buser D, Dula K, Belser U, Hirt HP, Berthold H. Localized ridge augmentation using guided bone regeneration. 1. Surgical procedure in the maxilla. Int J Periodontics Restorative Dent. 1993;13:29-45.

 

75. Becker W, Dahlin C, Becker BE, Lekholm U, van Steenberghe D, Higuchi K, et al. The use of e-PTFE barrier membranes for bone promotion around titanium implants placed into extraction sockets: a prospective multicenter study. Int J Oral Maxillofac Implants. 1994;9:31-40.

 

76. Becker W, Dahlin C, Lekholm U, Bergstrom C, van Steenberghe D, Higuchi K, et al. Five-year evaluation of implants placed at extraction and with dehiscences and fenestration defects augmented with ePTFE membranes: results from a prospective multicenter study. Clin Implant Dent Relat Res. 1999;1:27-32.
http://dx.doi.org/10.1111/j.1708-8208.1999.tb00088.x

 

77. Bartee BK. Evaluation of a new polytetrafluoroethylene guided tissue regeneration membrane in healing extraction sites. Compend Contin Educ Dent. 1998;19:1256-8.

 

78. Bartee BK, Carr JA. Evaluation of a high-density polytetrafluoroethylene (n-PTFE) membrane as a barrier material to facilitate guided bone regeneration in the rat mandible. J Oral Implantol. 1995;21:88-95.

 

79. Song AM, Yang PS, Sun QF, Ge SH. [The effect on angiogenesis in guided tissue regeneration procedure using expanded polytetrafluoroethyene membranes in dogs]. J Shanghai Kou Qiang Yi Xue. 2001;10:236-9.

 

80. Kidd KR, Williams SK. Laminin-5-enriched extracellular matrix accelerates angiogenesis and neovascularization in association with ePTFE. J Biomed Mater Res A. 2004;69:294-304.
http://dx.doi.org/10.1002/jbm.a.20133

 

81. Kidd KR, Dal Ponte D, Stone AL, Hoying JB, Nagle RB, Williams SK. Stimulated endothelial cell adhesion and angiogenesis with laminin-5 modification of expanded polytetrafluoroethylene. Tiss Eng. 2005;11:1379-91.
http://dx.doi.org/10.1089/ten.2005.11.1379

 

82. Sumi Y, Miyaishi O, Tohnai I, Ueda M. Alveolar ridge augmentation with titanium mesh and autogenous bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:268-70.
http://dx.doi.org/10.1016/S1079-2104(00)70087-4

 

83. Funato A, Ishikawa T, Kitajima H, Yamada M, Moroi H. A Novel Combined Surgical Approach to Vertical Alveolar Ridge Augmentation with Titanium Mesh, Resorbable Membrane, and rhPDGF-BB: A Retrospective Consecutive Case Series. Int J Periodontics Restorative Dent. 2013;33:437-45.
http://dx.doi.org/10.11607/prd.1460