Toledano M, Osorio R, PŽrez-įlvarez MC, Osorio E, Lynch CD, Toledano-Osorio M. A zinc-doped endodontic cement facilitates functional mineralization and stress dissipation at the dentin surface. Med Oral Patol Oral Cir Bucal. 2018 Nov 1;23 (6):e646-55.  

 

 

doi:10.4317/medoral.22751

http://dx.doi.org/doi:10.4317/medoral.22751

 

 

1. Ranjkesh B, Ding M, Dalstra M, Nyengaard JR, Chevallier J, Isidor F, et al. Calcium phosphate precipitation in experimental gaps between fluoride-containing fast-setting calcium silicate cement and dentin. Eur J Oral Sci. 2018;126:118-25.
https://doi.org/10.1111/eos.12399
PMid:29334137

 

2. Osorio R, Sauro S, Watson TF, Toledano M. Polyaspartic acid enhances dentine remineralization bonded with a zinc-doped Portland-based resin cement. Int Endod J. 2016;49:874-83.
https://doi.org/10.1111/iej.12518
PMid:26269286

 

3. Flanagan TA. What can cause the pulps of immature, permanent teeth with open apices to become necrotic and what treatment options are available for these teeth. Aust Endod J. 2014;40:95-100.
https://doi.org/10.1111/aej.12087
PMid:25470507

 

4. Huang M, Hill RG, Rawlinson SCF. Zinc bioglasses regulate mineralization in human dental pulp stem cells. Dent Mater. 2017;33:543-52.
https://doi.org/10.1016/j.dental.2017.03.011
PMid:28366235

 

5. Ivancik J, Arola DD. The importance of microstructural variations on the fracture toughness of human dentin. Biomaterials. 2013;34:864-74.
https://doi.org/10.1016/j.biomaterials.2012.10.032
PMid:23131531 PMCid:PMC3511669

 

6. Osorio R, Alfonso-Rodr’guez CA, Medina-Castillo AL, Alaminos M, Toledano M. Bioactive Polymeric Nanoparticles for Periodontal Therapy. PloS One. 2016;11:e0166217.
https://doi.org/10.1371/journal.pone.0166217
PMid:27820866 PMCid:PMC5098795

 

7. Nalla RK, Kinney JH, Ritchie RO. Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. Biomaterials. 2003;24:3955-68.
https://doi.org/10.1016/S0142-9612(03)00278-3

 

8. Misra A, Spencer P, Marangos O, Wang Y, Katz JL. Micromechanical analysis of dentin/adhesive interface by the finite element method. J Biomed Mater Res B Appl Biomater. 2004;70:56-65.
https://doi.org/10.1002/jbm.b.30012
PMid:15199584 PMCid:PMC3678287

 

9. Yan J, Taskonak B, Platt JA, Mecholsky JJ. Evaluation of fracture toughness of human dentin using elastic-plastic fracture mechanics. J Biomech. 2008;41:1253-9.
https://doi.org/10.1016/j.jbiomech.2008.01.015
PMid:18328490

 

10. Toledano M, Osorio R, Osorio E, Medina-Castillo AL, Toledano-Osorio M, Aguilera FS. Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface. J Mech Behav Biomed Mater. 2017;68:62-79.
https://doi.org/10.1016/j.jmbbm.2017.01.026
PMid:28152444

 

11. Koibuchi H, Yasuda N, Nakabayashi N. Bonding to dentin with a self-etching primer: the effect of smear layers. Dent Mater 2001;17:122-6.
https://doi.org/10.1016/S0109-5641(00)00049-X

 

12. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564-83.
https://doi.org/10.1557/JMR.1992.1564

 

13. Han L, Grodzinsky AJ, Ortiz C. Nanomechanics of the cartilage extracellular matrix. Annu Rev Mater Res. 2011;41:133-68.
https://doi.org/10.1146/annurev-matsci-062910-100431
PMid:22792042 PMCid:PMC3392687

 

14. Balooch M, Habelitz S, Kinney JH, Marshall SJ, Marshall GW. Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J Struct Biol. 2008;162:404-10.
https://doi.org/10.1016/j.jsb.2008.02.010
PMid:18467127 PMCid:PMC2697659

 

15. Bertassoni LE, Stankoska K, Swain MV. Insights into the structure and composition of the peritubular dentin organic matrix and the lamina limitans. Micron 1993;43:229-36.
https://doi.org/10.1016/j.micron.2011.08.003
PMid:21890367

 

16. Ryou H, Pashley DH, Tay FR, Arola D. A characterization of the mechanical behavior of resin-infiltrated dentin using nanoscopic Dynamic Mechanical Analysis. Dent Mater. 2013;29:719-28.
https://doi.org/10.1016/j.dental.2013.03.022
PMid:23639453 PMCid:PMC3817502

 

17. Marshall GW, Habelitz S, Gallagher R, Balooch M, Balooch G, Marshall SJ. Nanomechanical properties of hydrated carious human dentin. J Dent Res. 2001;80:1768-71.
https://doi.org/10.1177/00220345010800081701
PMid:11669491

 

18. Shinno Y, Ishimoto T, Saito M, Uemura R, Arino M, Marumo K, et al. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin. Sci Rep. 2016;6:19849.
https://doi.org/10.1038/srep19849
PMid:26797297 PMCid:PMC4726429

 

19. Arola DD, Reprogel RK. Tubule orientation and the fatigue strength of human dentin. Biomaterials. 2006;27:2131-40.
https://doi.org/10.1016/j.biomaterials.2005.10.005
PMid:16253323

 

20. Nalla RK, Kinney JH, Ritchie RO. Effect of orientation on the in vitro fracture toughness of dentin: the role of tougheningmechanisms. Biomaterials. 2003;24: 3955-68.
https://doi.org/10.1016/S0142-9612(03)00278-3

 

21. Holland R. Histochemical response of amputed pulps to calcium hydroxide. Rev Bras Pesq Med Biol. 1971;4:83-95.

 

22. Ji B. A study of the interface strength between protein and mineral in biological materials. J Biomech. 2008;41:259-66.
https://doi.org/10.1016/j.jbiomech.2007.09.022
PMid:17981285

 

23. Bajaj D, Sundaram N, Nazari A, Arola D. Age, dehydration and fatigue crack growth in dentin. Biomaterials. 2006;27:2507-17.
https://doi.org/10.1016/j.biomaterials.2005.11.035
PMid:16338002

 

24. Gopalakrishnan V, Zukoski CF. Delayed flow in thermo-reversible colloidal gels. J Rheol. 2007;51:623-44.
https://doi.org/10.1122/1.2736413

 

25. Hoppe A, GŸldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757-74.
https://doi.org/10.1016/j.biomaterials.2011.01.004
PMid:21292319

 

26. Toledano M, Aguilera FS, Osorio E, Cabello I, Toledano-Osorio M, Osorio R. Self-etching zinc-doped adhesives improve the potential of caries-affected dentin to be functionally remineralized. Biointerphases. 2015; 10:031002.
https://doi.org/10.1116/1.4926442
PMid:26178264

 

27. Osorio R, Yamauti M, Sauro S, Watson TF, Toledano M. Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement. J Endod. 2014;40:1840-5.
https://doi.org/10.1016/j.joen.2014.06.016
PMid:25129025

 

28. Son JS, Kim SG, Oh JS, Appleford M, Oh S, Ong JL, et al. Hydroxyapatite/polylactide biphasic combination scaffold loaded with dexamethasone for bone regeneration. J Biomed Mater Res A. 2011;99:638-47.
https://doi.org/10.1002/jbm.a.33223
PMid:21954052

 

29. Toledano M, PŽrez-įlvarez MC, Aguilera FS, Osorio E, Cabello I, Toledano-Osorio M, et al. A zinc oxide-modified hydroxyapatite-based cement facilitated new crystalline-stoichiometric and amorphous apatite precipitation on dentine. Int Endod J. 2017;50:e109-19.
https://doi.org/10.1111/iej.12807
PMid:28653756

 

30. Kruzic JJ, Nalla RK, Kinney JH, Ritchie RO. Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. Biomaterials. 2003;24:5209-21.
https://doi.org/10.1016/S0142-9612(03)00458-7