Alonso-Rodriguez E, González-Martín-Moro J,  Cebrián-Carretero JL, Del Castillo JL, Pozo-Kreilinger JJ, Ruiz-Bravo E, García-Arranz M, Hernández-Godoy J, Burgueño M Bisphosphonate-related osteonecrosis. Application of adipose-derived stem cells in an experimental murine model. Med Oral Patol Oral Cir Bucal. 2019 Jul 1;24 (4):e529-36.   

 

doi:10.4317/medoral.22959

http://dx.doi.org/doi:10.4317/medoral.22959

____________________________________________________________________________________________________________________________________________________________________________

 

References

1. Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, et al. American association of oral and maxillofacial surgeons position paper on medication-related osteonecrosis of the jaw - 2014 update. J Oral Maxillofac Surg. American Association of Oral and Maxillofacial Surgeons. 2014;72:1938-56.
https://doi.org/10.1016/j.joms.2014.04.031
PMid:25234529

 

2. Aghaloo T, Hazboun R, Tetradis S. Pathophysiology of Osteonecrosis of the Jaws. Oral Maxillofac Surg Clin North Am 2015: 27(4): 489-496. doi: 10.1016/j.coms.2015.06.001
https://doi.org/10.1016/j.coms.2015.06.001
PMid:26412796 PMCid:PMC4908822

 

3. Kaibuchi N, Iwata T, Yamato M, Okano T, Ando T. Multipotent mesenchymal stromal cell sheet therapy for bisphosphonate-related osteonecrosis of the jaw in a rat model. Acta Biomater. 2016;42:400-10.
https://doi.org/10.1016/j.actbio.2016.06.022
PMid:27326918

 

4. Kikuiri T, Kim I, Yamaza T, Akiyama K, Zhang Q, Li Y, et al. Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw-like disease in mice. J Bone Min Res. 2010;25: 1668-79.
https://doi.org/10.1002/jbmr.37
PMid:20200952 PMCid:PMC3154005

 

5. Ogata K, Katagiri W, Osugi M, Kawai T, Sugimura Y, Hibi H, et al. Evaluation of the therapeutic effects of conditioned media from mesenchymal stem cells in a rat bisphosphonate-related osteonecrosis of the jaw-like model. Bone. 2015;74: 95-105.
https://doi.org/10.1016/j.bone.2015.01.011
PMid:25613174

 

6. Li Y, Xu J, Mao L, Liu Y, Gao R, Zheng Z, et al. Allogeneic Mesenchymal Stem Cell Therapy for Bisphosphonate-Related Jaw Osteonecrosis in Swine. Stem Cells Dev. 2013;22: 2047-56.
https://doi.org/10.1089/scd.2012.0615
PMid:23461552 PMCid:PMC3699896

 

7. Gonzálvez-García M, Rodríguez-Lozano FJ, Villanueva V, Segarra-Fenoll D, Rodríguez-González MA, Oñate-Sánchez R, et al. Cell therapy in bisphosphonate-related osteonecrosis of the jaw. J Craniofac Surg. 2013;24: e226-8.
https://doi.org/10.1097/SCS.0b013e3182869968
PMid:23714970

 

8. Cella L, Oppici A, Arbasi M, Moretto M, Piepoli M, Vallisa D, et al. Autologous bone marrow stem cell intralesional transplantation repairing bisphosphonate related osteonecrosis of the jaw. Head Face Med. 2011;17:16.
https://doi.org/10.1186/1746-160X-7-16
PMid:21849044 PMCid:PMC3175443

 

9. Voss PJ, Matsumoto A, Alvarado E, Schmelzeisen R, Duttenhöfer F, Poxleitner P. Treatment of stage II medication-related osteonecrosis of the jaw with necrosectomy and autologous bone marrow mesenchymal stem cells. 2017;105: 484-93.
https://doi.org/10.1007/s10266-017-0295-4
PMid:28220264

 

10. Barba-Recreo P, Del Castillo Pardo de Vera JL, Georgiev-Hristov T, Ruiz Bravo-Burguillos E, Abarrategi A, Burgueño M, et al. Adipose-derived stem cells and platelet-rich plasma for preventive treatment of bisphosphonate-related osteonecrosis of the jaw in a murine model. J Craniomaxillofac Surg. 2015;43:1161-8.
https://doi.org/10.1016/j.jcms.2015.04.026
PMid:26027865

 

11. Kuroshima S, Sasaki M, Nakajima K, Tamaki S, Hayano H, Sawase T. Transplantation of Noncultured Stromal Vascular Fraction Cells of Adipose Tissue Ameliorates Osteonecrosis of the Jaw-Like Lesions in Mice. J Bone Min Res. 2018;33:154-66.
https://doi.org/10.1002/jbmr.3292
PMid:28902422

 

12. Toyserkani NM, Christensen ML, Sheikh SP, Sørensen JA. Adipose-Derived Stem Cells: New treatment for wound healing. Ann Plast Surg. 2015; 75:117-23.
https://doi.org/10.1097/SAP.0000000000000083
PMid:24691309

 

13. Barba-recreo P, Del Castillo Pardo de Vera JL, García-arranz M, Yébenes L, et al. Zoledronic acid - Related osteonecrosis of the jaws . Experimental model with dental extractions in rats. J Craniomaxillofac Surg. 2014;42:744-50.
https://doi.org/10.1016/j.jcms.2013.11.005
PMid:24342733

 

14. Fantasia JE. Bisphosphonates-What the Dentist Needs to Know: Practical Considerations. J Oral Maxillofac Surg. 2009;67:53-60.
https://doi.org/10.1016/j.joms.2009.01.011
PMid:19371815

 

15. Favia G, Pilolli GP, Maiorano E. Histologic and histomorphometric features of bisphosphonate-related osteonecrosis of the jaws: An analysis of 31 cases with confocal laser scanning microscopy. Bone. 2009;45:406-13.
https://doi.org/10.1016/j.bone.2009.05.008
PMid:19450715

 

16. Yamashita J, Koi K, Yang D-Y, McCauley LK. Effect of Zoledronate on Oral Wound Healing in Rats. Clin Cancer Res. 2011;17:1405-14.
https://doi.org/10.1158/1078-0432.CCR-10-1614
PMid:21149614 PMCid:PMC3060285

 

17. Kobayashi Y, Hiraga T, Ueda A, Wang L, Matsumoto-Nakano M, Hata K, et al. Zoledronic acid delays wound healing of the tooth extraction socket, inhibits oral epithelial cell migration, and promotes proliferation and adhesion to hydroxyapatite of oral bacteria, without causing osteonecrosis of the jaw, in mice. J Bone Min Metab. 2010;28:165-75.
https://doi.org/10.1007/s00774-009-0128-9
PMid:19882100

 

18. Matsumoto MA, de Abreu Furquim EM, Gonçalves A, Santiago-Júnior JF, Saraiva PP, Cardoso CL, et al. Aged rats under zoledronic acid therapy and oral surgery. J Craniomaxillofac Surg. 2017;45:781-7.
https://doi.org/10.1016/j.jcms.2017.02.002
PMid:28318924

 

19. Lodi G, Sardella A, Salis A, Demarosi F, Tarozzi M, Carrassi A. Tooth Extraction in Patients Taking Intravenous Bisphosphonates: A Preventive Protocol and Case Series. J Oral Maxillofac Surg. 2010;68:107-10.
https://doi.org/10.1016/j.joms.2009.07.068
PMid:20006163

 

20. Heufelder MJ, Hendricks J, Remmerbach T, Frerich B, Hemprich A, Wilde F. Principles of oral surgery for prevention of bisphosphonate-related osteonecrosis of the jaw. Oral Surg Oral Med Oral pathol Oral Radiol. 2014;117: e429-35.
https://doi.org/10.1016/j.oooo.2012.08.442
PMid:23182374

 

21. Gaudin E, Seidel L, Bacevic M, Rompen E, Lambert F. Occurrence and risk indicators of medication-related osteonecrosis of the jaw after dental extraction: a systematic review and meta-analysis. J Clin Periodontol. 2015;42: 922-32.
https://doi.org/10.1111/jcpe.12455
PMid:26362756

 

22. López-Jornet P, Camacho-Alonso F, Molina-Miñano F, Gómez-García F, Vicente-Ortega V. An experimental study of bisphosphonate-induced jaws osteonecrosis in Sprague-Dawley rats. J Oral Pathol Med. 2010;39: 697-702.
https://doi.org/10.1111/j.1600-0714.2010.00927.x
PMid:20819131

 

23. Abtahi J, Agholme F, Sandberg O, Aspenberg P. Bisphosphonate-induced osteonecrosis of the jaw in a rat model arises first after the bone has become exposed. No primary necrosis in unexposed bone. J Oral Pathol Med. 2012;41:494-9.
https://doi.org/10.1111/j.1600-0714.2011.01125.x
PMid:22268631

 

24. Marx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: Risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg. 2005;63:1567-75.
https://doi.org/10.1016/j.joms.2005.07.010
PMid:16243172

 

25. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. 2001;7: 211-8.
https://doi.org/10.1089/107632701300062859
PMid:11304456

 

26. Baer PC. Adipose-Derived Stem Cells and Their Potential to Differentiate into the Epithelial Lineage. Stem Cells Dev. 2011;20:1805-16.
https://doi.org/10.1089/scd.2011.0086
PMid:21495915

 

27. Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, et al. Potential for Neural Differentiation of Mesenchymal Stem Cells. Adv Biochem Eng Biotechnol. 2013;129: 89-115.
https://doi.org/10.1007/10_2012_152
PMid:22899379

 

28. Lee K, Kim H, Kim J-M, Kim J-R, Kim K-J, Kim Y-J, et al. Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J Cell Mol Med. 2011;15:2082-94.
https://doi.org/10.1111/j.1582-4934.2010.01230.x
PMid:21159123 PMCid:PMC4394219

 

29. Wood J, Bonjean K, Ruetz S, Bellahcène A, Devy L, Foidart JM, et al. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther. 2002;302:1055-61.
https://doi.org/10.1124/jpet.102.035295
PMid:12183663

 

30. Santini D, Vincenzi B, Dicuonzo G, Avvisati G, Massacesi C, Battistoni F, et al. Advances in Brief Zoledronic Acid Induces Significant and Long-Lasting Modifications of Circulating Angiogenic Factors in Cancer Patients. Clin Cancer Res. 2003;9:2893-7

 

31. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells. Circulation. 2004;109:1292-8.
https://doi.org/10.1161/01.CIR.0000121425.42966.F1
PMid:14993122

 

32. Bochev I, Elmadjian G, Kyurkchiev D, Tzvetanov L, Altankova I, Tivchev P, et al. Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol Int. 2008;32:384-93.
https://doi.org/10.1016/j.cellbi.2007.12.007
PMid:18262807

 

33. Noël D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L, et al. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res. 2008;314:1575-84.
https://doi.org/10.1016/j.yexcr.2007.12.022
PMid:18325494

 

34. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of Multi-Lineage Cells from Human Adipose Tissue and Bone Marrow. Cells Tissues Organs. 2003;174: 101-9.
https://doi.org/10.1159/000071150
PMid:12835573

 

35. Pachón-Peña G, Yu G, Tucker A, Wu X, Vendrell J, Bunnell BA, et al. Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. J Cell Physiol. 2011;226: 843-51.
https://doi.org/10.1002/jcp.22408
PMid:20857424 PMCid:PMC4340690

 

36. Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H. Adipose Tissue-Derived Multipotent Stromal Cells Have a Higher Immunomodulatory Capacity Than Their Bone Marrow-Derived Counterparts. Stem Cells Transl Med. 2013;2: 455-63.
https://doi.org/10.5966/sctm.2012-0184
PMid:23694810 PMCid:PMC3673757

 

37. Li C, Wu X, Tong J, Yang X, Zhao J, Zheng Q, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther. 2015;6:55.
https://doi.org/10.1186/s13287-015-0066-5
PMid:25884704 PMCid:PMC4453294

 

38. Peinado JR, Pardo M, de la Rosa O, Malagón MM. Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity. Proteomics. 2012;12:607-20.
https://doi.org/10.1002/pmic.201100355
PMid:22246603