Alonso-Rodriguez E, González-Martín-Moro J, Cebrián-Carretero JL, Del Castillo JL, Pozo-Kreilinger JJ, Ruiz-Bravo E, García-Arranz M, Hernández-Godoy J, Burgueño M Bisphosphonate-related osteonecrosis. Application of adipose-derived stem cells in an experimental murine model. Med Oral Patol Oral Cir Bucal. 2019 Jul 1;24 (4):e529-36.
doi:10.4317/medoral.22959
http://dx.doi.org/doi:10.4317/medoral.22959
____________________________________________________________________________________________________________________________________________________________________________
References
1.
Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, et al.
American association of oral and maxillofacial surgeons position paper on
medication-related osteonecrosis of the jaw - 2014 update. J Oral Maxillofac
Surg. American Association of Oral and Maxillofacial Surgeons.
2014;72:1938-56. |
|
|
|
2.
Aghaloo T, Hazboun R, Tetradis S. Pathophysiology of Osteonecrosis of the
Jaws. Oral Maxillofac Surg Clin North Am 2015: 27(4): 489-496. doi:
10.1016/j.coms.2015.06.001 |
|
|
|
3.
Kaibuchi N, Iwata T, Yamato M, Okano T, Ando T. Multipotent mesenchymal
stromal cell sheet therapy for bisphosphonate-related osteonecrosis of the
jaw in a rat model. Acta Biomater. 2016;42:400-10. |
|
|
|
4.
Kikuiri T, Kim I, Yamaza T, Akiyama K, Zhang Q, Li Y, et al. Cell-based
immunotherapy with mesenchymal stem cells cures bisphosphonate-related
osteonecrosis of the jaw-like disease in mice. J Bone Min Res. 2010;25:
1668-79. |
|
|
|
5.
Ogata K, Katagiri W, Osugi M, Kawai T, Sugimura Y, Hibi H, et al. Evaluation
of the therapeutic effects of conditioned media from mesenchymal stem cells
in a rat bisphosphonate-related osteonecrosis of the jaw-like model. Bone.
2015;74: 95-105. |
|
|
|
6.
Li Y, Xu J, Mao L, Liu Y, Gao R, Zheng Z, et al. Allogeneic Mesenchymal Stem
Cell Therapy for Bisphosphonate-Related Jaw Osteonecrosis in Swine. Stem
Cells Dev. 2013;22: 2047-56. |
|
|
|
7.
Gonzálvez-García M, Rodríguez-Lozano FJ, Villanueva V, Segarra-Fenoll D,
Rodríguez-González MA, Oñate-Sánchez R, et al. Cell therapy in
bisphosphonate-related osteonecrosis of the jaw. J Craniofac Surg. 2013;24:
e226-8. |
|
|
|
8.
Cella L, Oppici A, Arbasi M, Moretto M, Piepoli M, Vallisa D, et al. Autologous
bone marrow stem cell intralesional transplantation repairing bisphosphonate
related osteonecrosis of the jaw. Head Face Med. 2011;17:16. |
|
|
|
9.
Voss PJ, Matsumoto A, Alvarado E, Schmelzeisen R, Duttenhöfer F, Poxleitner
P. Treatment of stage II medication-related osteonecrosis of the jaw with
necrosectomy and autologous bone marrow mesenchymal stem cells. 2017;105:
484-93. |
|
|
|
10.
Barba-Recreo P, Del Castillo Pardo de Vera JL, Georgiev-Hristov T, Ruiz
Bravo-Burguillos E, Abarrategi A, Burgueño M, et al. Adipose-derived stem
cells and platelet-rich plasma for preventive treatment of
bisphosphonate-related osteonecrosis of the jaw in a murine model. J
Craniomaxillofac Surg. 2015;43:1161-8. |
|
|
|
11.
Kuroshima S, Sasaki M, Nakajima K, Tamaki S, Hayano H, Sawase T.
Transplantation of Noncultured Stromal Vascular Fraction Cells of Adipose Tissue
Ameliorates Osteonecrosis of the Jaw-Like Lesions in Mice. J Bone Min Res.
2018;33:154-66. |
|
|
|
12.
Toyserkani NM, Christensen ML, Sheikh SP, Sørensen JA. Adipose-Derived Stem
Cells: New treatment for wound healing. Ann Plast Surg. 2015; 75:117-23. |
|
|
|
13.
Barba-recreo P, Del Castillo Pardo de Vera JL, García-arranz M, Yébenes L, et
al. Zoledronic acid - Related osteonecrosis of the jaws . Experimental model
with dental extractions in rats. J Craniomaxillofac Surg. 2014;42:744-50. |
|
|
|
14.
Fantasia JE. Bisphosphonates-What the Dentist Needs to Know: Practical
Considerations. J Oral Maxillofac Surg. 2009;67:53-60. |
|
|
|
15.
Favia G, Pilolli GP, Maiorano E. Histologic and histomorphometric features of
bisphosphonate-related osteonecrosis of the jaws: An analysis of 31 cases
with confocal laser scanning microscopy. Bone. 2009;45:406-13. |
|
|
|
16.
Yamashita J, Koi K, Yang D-Y, McCauley LK. Effect of Zoledronate on Oral
Wound Healing in Rats. Clin Cancer Res. 2011;17:1405-14. |
|
|
|
17.
Kobayashi Y, Hiraga T, Ueda A, Wang L, Matsumoto-Nakano M, Hata K, et al.
Zoledronic acid delays wound healing of the tooth extraction socket, inhibits
oral epithelial cell migration, and promotes proliferation and adhesion to
hydroxyapatite of oral bacteria, without causing osteonecrosis of the jaw, in
mice. J Bone Min Metab. 2010;28:165-75. |
|
|
|
18.
Matsumoto MA, de Abreu Furquim EM, Gonçalves A, Santiago-Júnior JF, Saraiva
PP, Cardoso CL, et al. Aged rats under zoledronic acid therapy and oral
surgery. J Craniomaxillofac Surg. 2017;45:781-7. |
|
|
|
19.
Lodi G, Sardella A, Salis A, Demarosi F, Tarozzi M, Carrassi A. Tooth
Extraction in Patients Taking Intravenous Bisphosphonates: A Preventive Protocol
and Case Series. J Oral Maxillofac Surg. 2010;68:107-10. |
|
|
|
20.
Heufelder MJ, Hendricks J, Remmerbach T, Frerich B, Hemprich A, Wilde F.
Principles of oral surgery for prevention of bisphosphonate-related
osteonecrosis of the jaw. Oral Surg Oral Med Oral pathol Oral Radiol.
2014;117: e429-35. |
|
|
|
21.
Gaudin E, Seidel L, Bacevic M, Rompen E, Lambert F. Occurrence and risk
indicators of medication-related osteonecrosis of the jaw after dental extraction:
a systematic review and meta-analysis. J Clin Periodontol. 2015;42: 922-32. |
|
|
|
22.
López-Jornet P, Camacho-Alonso F, Molina-Miñano F, Gómez-García F,
Vicente-Ortega V. An experimental study of bisphosphonate-induced jaws
osteonecrosis in Sprague-Dawley rats. J Oral Pathol Med. 2010;39: 697-702. |
|
|
|
23.
Abtahi J, Agholme F, Sandberg O, Aspenberg P. Bisphosphonate-induced
osteonecrosis of the jaw in a rat model arises first after the bone has
become exposed. No primary necrosis in unexposed bone. J Oral Pathol Med.
2012;41:494-9. |
|
|
|
24.
Marx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonate-induced exposed
bone (osteonecrosis/osteopetrosis) of the jaws: Risk factors, recognition,
prevention, and treatment. J Oral Maxillofac Surg. 2005;63:1567-75. |
|
|
|
25.
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage
Cells from Human Adipose Tissue: Implications for Cell-Based Therapies.
2001;7: 211-8. |
|
|
|
26.
Baer PC. Adipose-Derived Stem Cells and Their Potential to Differentiate into
the Epithelial Lineage. Stem Cells Dev. 2011;20:1805-16. |
|
|
|
27.
Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, et al. Potential
for Neural Differentiation of Mesenchymal Stem Cells. Adv Biochem Eng
Biotechnol. 2013;129: 89-115. |
|
|
|
28.
Lee K, Kim H, Kim J-M, Kim J-R, Kim K-J, Kim Y-J, et al. Systemic
transplantation of human adipose-derived stem cells stimulates bone repair by
promoting osteoblast and osteoclast function. J Cell Mol Med.
2011;15:2082-94. |
|
|
|
29.
Wood J, Bonjean K, Ruetz S, Bellahcène A, Devy L, Foidart JM, et al. Novel
antiangiogenic effects of the bisphosphonate compound zoledronic acid. J
Pharmacol Exp Ther. 2002;302:1055-61. |
|
|
|
30. Santini D, Vincenzi B, Dicuonzo G, Avvisati G, Massacesi C, Battistoni F, et al. Advances in Brief Zoledronic Acid Induces Significant and Long-Lasting Modifications of Circulating Angiogenic Factors in Cancer Patients. Clin Cancer Res. 2003;9:2893-7 |
|
|
|
31.
Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et
al. Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose
Stromal Cells. Circulation. 2004;109:1292-8. |
|
|
|
32.
Bochev I, Elmadjian G, Kyurkchiev D, Tzvetanov L, Altankova I, Tivchev P, et
al. Mesenchymal stem cells from human bone marrow or adipose tissue
differently modulate mitogen-stimulated B-cell immunoglobulin production in
vitro. Cell Biol Int. 2008;32:384-93. |
|
|
|
33.
Noël D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L, et al. Cell
specific differences between human adipose-derived and mesenchymal-stromal cells
despite similar differentiation potentials. Exp Cell Res. 2008;314:1575-84. |
|
|
|
34.
De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of Multi-Lineage Cells from Human Adipose
Tissue and Bone Marrow. Cells
Tissues Organs. 2003;174: 101-9. |
|
|
|
35.
Pachón-Peña G, Yu G, Tucker A, Wu X, Vendrell J, Bunnell BA, et al. Stromal stem cells from adipose tissue and bone
marrow of age-matched female donors display distinct immunophenotypic
profiles. J Cell Physiol. 2011;226: 843-51. |
|
|
|
36. Melief SM, Zwaginga JJ,
Fibbe WE, Roelofs H. Adipose Tissue-Derived Multipotent Stromal Cells Have a
Higher Immunomodulatory Capacity Than Their Bone Marrow-Derived Counterparts.
Stem Cells Transl Med. 2013;2: 455-63. |
|
|
|
37. Li C, Wu X, Tong J, Yang
X, Zhao J, Zheng Q, et al. Comparative analysis of human mesenchymal stem
cells from bone marrow and adipose tissue under xeno-free conditions for cell
therapy. Stem Cell Res Ther. 2015;6:55. |
|
|
|
38.
Peinado JR, Pardo M, de la Rosa O, Malagón MM. Proteomic characterization of adipose tissue constituents, a necessary
step for understanding adipose tissue complexity. Proteomics.
2012;12:607-20. |