Demyashkin G, Kogan E, Borozdkin L, Demura T, Shalamova E, Centroev Z, et al. Immunohistochemical and morphological characteristics of tissues response to polylactic acid membranes with silver nanoparticles. Med Oral Patol Oral Cir Bucal. 2020 Jan 1;25 (1):e29-33.
doi:10.4317/medoral. 23171
https://dx.doi.org/doi:10.4317/medoral.23171
1. Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. International Journal of Health Sciences. 2017;11:72-80. |
|
|||
|
||||
2.
Zeng N, van Leeuwen A, Yuan H, Bos RRM, Grijpma DW, Kuijer R.
Evaluation of novel resorbable membranes for bone augmentation in
a rat model. Clin Oral Implants Res.
2016;27:e8-e14. |
|
|||
|
||||
3.
Siaili M, Chatzopoulou D, Gillam D. An overview of periodontal
regenerative procedures for the general dental practitioner. The
Saudi Dental Journal.
2018;30:26-37. |
|
|||
|
||||
4.
Saleem M, Pisani F, Zahid FM, et al. Adjunctive platelet-rich
plasma (PRP) in infrabony regenerative treatment: a systematic
review and RCT's meta-analysis. Stem Cells International.
2018;2018:1-10. |
|
|||
|
||||
5.
Devi R, Dixit J. Clinical evaluation of insulin like growth
factor-I and vascular endothelial growth factor with alloplastic
bone graft material in the management of human two wall
intra-osseous defects. Journal of clinical and diagnostic
research.
2016;10:ZC41-ZC46. |
|
|||
|
||||
6.
Jung RE, Kokovic V, Jurisic M, Yaman D, Subramani K, Weber FE.
Guided bone regeneration with a synthetic biodegradable membrane:
a comparative study in dogs. Clinical Oral Implants Research.
2010;22:802-7. |
|
|||
|
||||
7.
Ivanov SYu, Bonartsev AP, Gazhva YuV. Development and preclinical
studies of insulating membranes based on
poly-3-hydroxybutyrate-co-3-hydroxyvalerate for guided bone
regeneration. Biomeditsinskaya Khimiya.
2015;61:717-23. |
|
|||
|
||||
8.
Papageorgiou SN, Papageorgiou PN, Deschner J, Götz W. Comparative
effectiveness of natural and synthetic bone grafts in oral and
maxillofacial surgery prior to insertion of dental implants:
systematic review and network meta-analysis of parallel and
cluster randomized controlled trials. J Dent.
2016;48:1-8. |
|
|||
|
||||
9.
Sbordone C, Toti P, Guidetti F, Califano L, Santoro A, Sbordone L.
Volume changes of iliac crest autogenous bone grafts after
vertical and horizontal alveolar ridge augmentation of atrophic
maxillas and mandibles: a 6-year computerized tomographic
follow-up. Journal of Oral and Maxillofacial Surgery.
2012;70:2559-65. |
|
|||
|
||||
10.
Durán N, Durán M, Jesus MBD, Seabra AB, Fávaro WJ, Nakazato G.
Silver nanoparticles: A new view on mechanistic aspects on
antimicrobial activity. Nanomedicine: Nanotechnology, Biology and
Medicine.
2016;12:789-99. |
|
|||
|
||||
11.
Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G. Silver
nanoparticles: synthesis, properties, and therapeutic
applications. Drug Discovery Today.
2015;20:595-601. |
|
|||
|
||||
12.
Chen S, Wang G, Wu T, et al. Silver Nanoparticles/Ibuprofen-Loaded
Poly(l-lactide) Fibrous Membrane: Anti-Infection and Anti-Adhesion
Effects. International Journal of Molecular Sciences.
2014;15:14014-25. |
|
|||
|
||||
13.
Khalandi B, Asadi N, Milani M, et al. A review on potential role
of silver nanoparticles and possible mechanisms of their actions
on bacteria. Drug Res (Stuttg).
2017;67:70-6. |
|
|||
|
||||
14.
Zhao R, Lv M, Li Y, et al. Stable nanocomposite based on PEGylated
and silver nanoparticles loaded graphene oxide for long-term
antibacterial activity. ACS Appl Mater Interfaces.
2017;9:15328-41. |
|
|||
|
||||
15.
Quinteros MA, Cano Aristizábal V, Dalmasso PR, Paraje MG, Páez
PL. Oxidative stress generation of silver nanoparticles in three
bacterial genera and its relationship with the antimicrobial
activity. Toxicol In Vitro.
2016;36:216-23. |
|
|||
|
||||
16.
Monteiro DR, Gorup LF, Takamiya AS, de Camargo ER, Filho AC,
Barbosa DB. Silver distribution and release from an antimicrobial
denture base resin containing silver colloidal nanoparticles. J
Prosthodont.
2012;21:7-15. |
|
|||
|
||||
17.
Long YM, Hu LG, Yan XT, et al. Surface ligand controls silver ion
release of nanosilver and its antibacterial activity against
Escherichia coli. Int J Nanomedicine.
2017;12:3193-206. |
|
|||
|
||||
18.
Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as
potential antibacterial agents. Molecules.
2015;20:8856-74. |
|
|||
|
||||
19.
Agarwal H, Nakara A, Shanmugam VK. Anti-inflammatory mechanism of
various metal and metal oxide nanoparticles synthesized using
plant extracts: A review. Biomed Pharmacother.
2019;109:2561-72. |
|
|||
|
||||
20.
Liu S, Zhao J, Ruan H, Wang W, Wu T, Cui W, et al. Antibacterial
and anti-adhesion effects of the silver nanoparticles-loaded
poly(L-lactide) fibrous membrane. Mater SciEng C Mater Biol Appl.
2013;33:1176-82. |
|