Demyashkin G, Kogan E, Borozdkin L, Demura T, Shalamova E, Centroev Z, et al. Immunohistochemical and morphological characteristics of tissues response to polylactic acid membranes with silver nanoparticles. Med Oral Patol Oral Cir Bucal. 2020 Jan 1;25 (1):e29-33.


doi:10.4317/medoral. 23171

https://dx.doi.org/doi:10.4317/medoral.23171


1. Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. International Journal of Health Sciences. 2017;11:72-80.


 

2. Zeng N, van Leeuwen A, Yuan H, Bos RRM, Grijpma DW, Kuijer R. Evaluation of novel resorbable membranes for bone augmentation in a rat model. Clin Oral Implants Res. 2016;27:e8-e14.
https://doi.org/10.1111/clr.12519
PMid:25382763


 

3. Siaili M, Chatzopoulou D, Gillam D. An overview of periodontal regenerative procedures for the general dental practitioner. The Saudi Dental Journal. 2018;30:26-37.
https://doi.org/10.1016/j.sdentj.2017.11.001
PMid:30166868 PMCid:PMC6112342


 

4. Saleem M, Pisani F, Zahid FM, et al. Adjunctive platelet-rich plasma (PRP) in infrabony regenerative treatment: a systematic review and RCT's meta-analysis. Stem Cells International. 2018;2018:1-10.
https://doi.org/10.1155/2018/9594235
PMid:29755531 PMCid:PMC5884028


 

5. Devi R, Dixit J. Clinical evaluation of insulin like growth factor-I and vascular endothelial growth factor with alloplastic bone graft material in the management of human two wall intra-osseous defects. Journal of clinical and diagnostic research. 2016;10:ZC41-ZC46.
https://doi.org/10.7860/JCDR/2016/21333.8476
PMid:27790578 PMCid:PMC5072078


 

6. Jung RE, Kokovic V, Jurisic M, Yaman D, Subramani K, Weber FE. Guided bone regeneration with a synthetic biodegradable membrane: a comparative study in dogs. Clinical Oral Implants Research. 2010;22:802-7.
https://doi.org/10.1111/j.1600-0501.2010.02068.x
PMid:21198905


 

7. Ivanov SYu, Bonartsev AP, Gazhva YuV. Development and preclinical studies of insulating membranes based on poly-3-hydroxybutyrate-co-3-hydroxyvalerate for guided bone regeneration. Biomeditsinskaya Khimiya. 2015;61:717-23.
https://doi.org/10.18097/PBMC20156106717
PMid:26716743


 

8. Papageorgiou SN, Papageorgiou PN, Deschner J, Götz W. Comparative effectiveness of natural and synthetic bone grafts in oral and maxillofacial surgery prior to insertion of dental implants: systematic review and network meta-analysis of parallel and cluster randomized controlled trials. J Dent. 2016;48:1-8.
https://doi.org/10.1016/j.jdent.2016.03.010
PMid:27012858


 

9. Sbordone C, Toti P, Guidetti F, Califano L, Santoro A, Sbordone L. Volume changes of iliac crest autogenous bone grafts after vertical and horizontal alveolar ridge augmentation of atrophic maxillas and mandibles: a 6-year computerized tomographic follow-up. Journal of Oral and Maxillofacial Surgery. 2012;70:2559-65.
https://doi.org/10.1016/j.joms.2012.07.040
PMid:22959878


 

10. Durán N, Durán M, Jesus MBD, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology and Medicine. 2016;12:789-99.
https://doi.org/10.1016/j.nano.2015.11.016
PMid:26724539


 

11. Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discovery Today. 2015;20:595-601.
https://doi.org/10.1016/j.drudis.2014.11.014
PMid:25543008 PMCid:PMC4433816


 

12. Chen S, Wang G, Wu T, et al. Silver Nanoparticles/Ibuprofen-Loaded Poly(l-lactide) Fibrous Membrane: Anti-Infection and Anti-Adhesion Effects. International Journal of Molecular Sciences. 2014;15:14014-25.
https://doi.org/10.3390/ijms150814014
PMid:25119863 PMCid:PMC4159836


 

13. Khalandi B, Asadi N, Milani M, et al. A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug Res (Stuttg). 2017;67:70-6.
https://doi.org/10.1055/s-0042-113383
PMid:27824432


 

14. Zhao R, Lv M, Li Y, et al. Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl Mater Interfaces. 2017;9:15328-41.
https://doi.org/10.1021/acsami.7b03987
PMid:28422486


 

15. Quinteros MA, Cano Aristizábal V, Dalmasso PR, Paraje MG, Páez PL. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol In Vitro. 2016;36:216-23.
https://doi.org/10.1016/j.tiv.2016.08.007
PMid:27530963


 

16. Monteiro DR, Gorup LF, Takamiya AS, de Camargo ER, Filho AC, Barbosa DB. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles. J Prosthodont. 2012;21:7-15.
https://doi.org/10.1111/j.1532-849X.2011.00772.x
PMid:22050139


 

17. Long YM, Hu LG, Yan XT, et al. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. Int J Nanomedicine. 2017;12:3193-206.
https://doi.org/10.2147/IJN.S132327
PMid:28458540 PMCid:PMC5402892


 

18. Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20:8856-74.
https://doi.org/10.3390/molecules20058856
PMid:25993417 PMCid:PMC6272636


 

19. Agarwal H, Nakara A, Shanmugam VK. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed Pharmacother. 2019;109:2561-72.
https://doi.org/10.1016/j.biopha.2018.11.116
PMid:30551516


 

20. Liu S, Zhao J, Ruan H, Wang W, Wu T, Cui W, et al. Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(L-lactide) fibrous membrane. Mater SciEng C Mater Biol Appl. 2013;33:1176-82.
https://doi.org/10.1016/j.msec.2012.12.008
PMid:23827557