Witek L, Tovar N, Lopez CD, Morcos J, Bowers M, Petrova RS, et al. Assessing osseointegration of metallic implants with boronized surface treatment. Med Oral Patol Oral Cir Bucal. 2020 May 1;25 (3):e311-7.
doi:10.4317/medoral.23175
https://dx.doi.org/doi:10.4317/medoral.23175
1. Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52:155-70. |
PMid:7246093 |
2. Coelho PG, Jimbo R. Osseointegration of metallic devices: current trends based on implant hardware design. Archives Biochem Biophys. 2014;561:99-108. |
PMid:25010447 |
3. Moy PK, Medina D, Shetty V, Aghaloo TL. Dental implant failure rates and associated risk factors. Intl J Oral Maxillofacial Implants. 2005;20:569-77. |
PMid:16161741 |
4. Smith AJ, Dieppe P, Vernon K, Porter M, Blom AW. Failure rates of stemmed metal-on-metal hip replacements: analysis of data from the National Joint Registry of England and Wales. Lancet. 2012;379:1199-204. |
PMid:22417410 |
5. Roach P, Eglin D, Rohde K, Perry CC. Modern biomaterials: a review-bulk properties and implications of surface modifications. J Mater Sci Mater Med. 2007;18:1263-77. |
PMid:17443395 |
6. Yoon WJ, Kim SG, Oh JS, You JS, Jeong KI, Lim SC, et al. Comparative study on the osseointegration of implants in dog mandibles according to the implant surface treatment. J Korean Assoc Oral Maxillofac Surg. 2016;42:345-51. |
PMid:28053904 PMCid:PMC5206239 |
7. Baldassarri M, Bonfante E, Suzuki M, Marin C, Granato R, Tovar N, et al. Mechanical properties of human bone surrounding plateau root form implants retrieved after 0.3-24 years of function. J Biomed Mater Res B Appl Biomater. 2012;100:2015-21 |
PMid:22865766 |
8. Yao Q, Sun J, Fu Y, Tong W, Zhang H. An Evaluation of a Borided Layer Formed on Ti-6Al-4V Alloy by Means of SMAT and Low-Temperature Boriding. Materials. 2016;9:993. |
PMid:28774115 PMCid:PMC5456997 |
9. Doğan A, Demirci S, Bayir Y, Halici Z, Karakus E, Aydin A, et al. Boron containing poly-(lactide-co-glycolide)(PLGA) scaffolds for bone tissue engineering. Mater Sci Eng C. 2014;44:246-53. |
PMid:25280703 |
10. Hakki SS, Dundar N, Kayis S, Hakki EE, Hamurcu M, Kerimoglu U, et al. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. J Trace Elem Med Biol. 2013;27:148-53. |
PMid:22944583 |
11. Lahens B, Neiva R, Tovar N, Alifarag AM, Jimbo R, Bonfante EA, et al. Biomechanical and histologic basis of osseodensification drilling for endosteal implant placement in low density bone. An experimental study in sheep. J Mech Behav Biomed Mater. 2016;63:56-65. |
PMid:27341291 |
12. Chen X, Zhao Y, Geng S, Miron RJ, Zhang Q, Wu C, et al. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold. Int J Nanomedicine. 2015;10:839-46. |
PMid:25653525 PMCid:PMC4309792 |
13. Gorustovich AA, López JM, Guglielmotti MB, Cabrini RL. Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow. Biomed Mater. 2006;1:100-5. |
PMid:18458389 |
14. Zofkova I, Davis M, Blahos J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res. 2017;66:391-402. |
PMid:28248532 |