Sánchez-Garcés MÁ, Camps-Font O, Escoda-Francolí J, Muñoz-Guzón F, Toledano-Serrabona J, Gay-Escoda C. Short time guided bone regeneration using beta-tricalcium phosphate with and without fibronectin – An experimental study in rats. Med Oral Patol Oral Cir Bucal. 2020 Jul 1;25 (4):e532-40.
doi:10.4317/medoral.23564
https://dx.doi.org/doi:10.4317/medoral.23564
1. Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology-is it still a "gold standard"? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent. 2017;3:23. |
PMid:28573552 PMCid:PMC5453915 |
2. Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res. 2015;56:175-94. |
PMid:25803622 |
3. Clokie CML, Moghadam H, Jackson MT, Sandor GKB. Closure of critical sized defects with allogenic and alloplastic bone substitutes. J Craniofac Surg. 2002;13:111-3. |
PMid:11887007 |
4. Wang Z, Guo Z, Bai H, Li J, Li X, Chen G, et al. Clinical evaluation of beta-TCP in the treatment of lacunar bone defects: A prospective, randomized controlled study. Mater Sci Eng C Mater Biol Appl. 2013;33:1894-9. |
PMid:23498210 |
5. Miron RJ, Zhang YF. Osteoinduction: A review of old concepts with new standards. J Dent Res. 2012;91:736-44. |
PMid:22318372 |
6. Homaeigohar SS, Shokrgozar MA, Khavandi A, Sadi AY. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: A survey using human osteoblast and fibroblast bone cells. J Biomed Mater Res A. 2008;84:491-9. |
PMid:17618499 |
7. Lee DSH, Pai Y, Chang S, Kim DH. Microstructure, physical properties, and bone regeneration effect of the nano-sized beta-tricalcium phosphate granules. Mater Sci Eng C Mater Biol Appl. 2016;58:971-6. |
PMid:26478393 |
8. Rojbani H, Nyan M, Ohya K, Kasugai S. Evaluation of the osteoconductivity of alpha-tricalcium phosphate, beta-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res A. 2011;98:488-98. |
PMid:21681941 |
9. Suenaga H, Furukawa KS, Suzuki Y, Takato T, Ushida T. Bone regeneration in calvarial defects in a rat model by implantation of human bone marrow-derived mesenchymal stromal cell spheroids. J Mater Sci Mater Med. 2015;26:254. |
PMid:26449444 PMCid:PMC4598349 |
10. Gomes PS, Fernandes MH. Rodent models in bone-related research: The relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim. 2011;45:14-24. |
PMid:21156759 |
11. Li J, Hong J, Zheng Q, Guo X, Lan S, Cui F, et al. Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. J Orthop Res. 2011;29:1745-52. |
PMid:21500252 |
12. Luvizuto ER, Tangl S, Zanoni G, Okamoto T, Sonoda CK, Gruber R, et al. The effect of BMP-2 on the osteoconductive properties of beta-tricalcium phosphate in rat calvaria defects. Biomaterials. 2011;32:3855-61. |
PMid:21376389 |
13. Rodriguez R, Kondo H, Nyan M, Hao J, Miyahara T, Ohya K, et al. Implantation of green tea catechin alpha-tricalcium phosphate combination enhances bone repair in rat skull defects. J Biomed Mater Res B Appl Biomater. 2011;98:263-71. |
PMid:21591251 |
14. Annibali S, Bellavia D, Ottolenghi L, Cicconetti A, Cristalli MP, Quaranta R, et al. Micro-CT and PET analysis of bone regeneration induced by biodegradable scaffolds as carriers for dental pulp stem cells in a rat model of calvarial "critical size" defect: Preliminary data. J Biomed Mater Res B Appl Biomater. 2014;102:815-25. |
PMid:24142538 |
15. Annibali S, Cicconetti A, Cristalli MP, Giordano G, Trisi P, Pilloni A, et al. A comparative morphometric analysis of biodegradable scaffolds as carriers for dental pulp and periosteal stem cells in a model of bone regeneration. J Craniofac Surg. 2013;24:866-71. |
PMid:23714898 |
16. Ball MD, O'Connor D, Pandit A. Use of tissue transglutaminase and fibronectin to influence osteoblast responses to tricalcium phosphate scaffolds. J Mater Sci Mater Med. 2009;20:113-22. |
PMid:18704653 |
17. Fernandez MS, Arias JI, Martinez MJ, Saenz L, Neira-Carrillo A, Yazdani-Pedram M, et al. Evaluation of a multilayered chitosan-hydroxy-apatite porous composite enriched with fibronectin or an in vitro-generated bone-like extracellular matrix on proliferation and diferentiation of osteoblasts. J Tissue Eng Regen Med. 2012;6:497-504. |
PMid:21812117 |
18. Park JM, Koak JY, Jang JH, Han CH, Kim SK, Heo SJ. Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Int J Oral Maxillofac Implants. 2006;21:859-66. |
PMid:17190295 |
19. Alvira-González J, Sánchez-Garcés MÀ, Barbany-Cairó JR, Del Pozo MR, Sánchez CM, Gay-Escoda C. Assessment of bone regeneration using adipose-derived stem cells in critical-size alveolar ridge defects: An experimental study in a dog model. Int J Oral Maxillofac Implant. 2016;31:196-203. |
PMid:26800179 |
20. Sánchez-Garcés MÀ, Alvira-González J, Sánchez CM, Barbany-Cairó JR, Del Pozo MR, Gay-Escoda C. Bone regeneration using adipose-derived stem cells with fibronectin in dehiscence-type defects associated with dental implants: An experimental study in a dog model. Int J Oral Maxillofac Implant. 2017;32:97-106. |
PMid:28291861 |
21. Escoda-Francolí J, Sánchez-Garcés MÁ, Gimeno-Sandig Á, Muñoz-Guzón F, Barbany-Cairó JR, Badiella-Busquets L, et al. Guided bone regeneration using beta-tricalcium phosphate with and without fibronectin-An experimental study in rats. Clin Oral Implants Res. 2018;29:1038-49. |
PMid:30267433 |
22. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:1000412. |
PMid:20613859 PMCid:PMC2893951 |
23. Benic GI, Thoma DS, Munoz F, Sanz-Martin I, Jung RE, Hammerle CHF. Guided bone regeneration of periimplant defects with particulated and block xenogenic bone substitutes. Clin Oral Implants Res. 2016;27:567-76. |
PMid:26073212 |
24. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 2013;28:2-17. |
PMid:23197339 PMCid:PMC3672237 |
25. Calciolari E, Ravanetti F, Strange A, Mardas N, Bozec L, Cacchioli A, et al. Degradation pattern of porcine collagen membrane in an in vivo model of guided bone regeneration. J Periodontal Res. 2018;53:430-9. |
PMid:29446096 |
26. Ramalingam S, Al-Rasheed A, ArRejaie A, Nooh N, Al-Kindi M, Al-Hezaimi K. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: A real-time in vivo micro-computed tomographic experiment in rats. Odontology. 2016;104:199-210. |
PMid:26156449 |
27. Kostopoulos L, Karring T. Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer. Clin Oral Implants Res. 1994;5:66-74. |
PMid:7918911 |
28. Agrali OB, Yildirim S, Ozener HO, Köse KN, Ozbeyli D, Soluk-Tekkesin M, et al. Evaluation of the effectiveness of esterified hyaluronic acid fibers on bone regeneration in rat calvarial defects. Biomed Res Int. 2018;2018:3874131. |
PMid:30050929 PMCid:PMC6046155 |
29. Bae E Bin, Park KH, Shim JH, Chung HY, Choi JW, Lee JJ, et al. Efficacy of rhBMP-2 loaded PCL/ β -TCP/bdECM scaffold fabricated by 3D printing technology on bone regeneration. Biomed Res Int. 2018;2018:2876135. |
PMid:29682530 PMCid:PMC5848108 |
30. Kim RW, Kim JH, Moon SY. Effect of hydroxyapatite on critical-sized defect. Maxillofac Plast Reconstr Surg. 2016;38:26. |
PMid:27441185 PMCid:PMC4932121 |
31. Abou Fadel R, Samarani R, Chakar C. Guided bone regeneration in calvarial critical size bony defect using a double-layer resorbable collagen membrane covering a xenograft: A histological and histomorphometric study in rats. Oral Maxillofac Surg. 2018;22:203-13. |
PMid:29654386 |
32. Calvo-Guirado JL, Delgado-Ruiz RA, Ramirez-Fernandez MP, Mate-Sanchez JE, Ortiz-Ruiz A, Marcus A. Histomorphometric and mineral degradation study of Ossceram: A novel biphasic B-tricalcium phosphate in critical size defects in rabbits. Clin Oral Implants Res. 2012;23:667-75. |
PMid:21492238 |
33. Cho YD, Kim BS, Lee CS, Kim KH, Seol YJ, Lee YM, et al. Fibronectin-derived oligopeptide stimulates osteoblast differentiation through a bone morphogenic protein 2-like signaling pathway. J Periodontol. 2017;88:42-8. |
PMid:27620656 |
34. Nyan M, Sato D, Kihara H, Machida T, Ohya K, Kasugai S. Effects of the combination with alpha-tricalcium phosphate and simvastatin on bone regeneration. Clin Oral Implants Res. 2009;20:280-7. |
PMid:19397639 |
35. Cochran DL, Oh TJ, Mills MP, Clem DS, McClain PK, Schallhorn RA, et al. A randomized clinical trial evaluating rh-FGF-2/β-TCP in periodontal defects. J Dent Res. 2016;95:523-30. |
PMid:26908630 |
36. Donos N, Dereka X, Mardas N. Experimental models for guided bone regeneration in healthy and medically compromised conditions. Periodontol 2000. 2015;68:99-121. |
PMid:25867982 |
37. Donos N, Lang NP, Karoussis IK, Bosshardt D, Tonetti M, Kostopoulos L. Effect of GBR in combination with deproteinized bovine bone mineral and/or enamel matrix proteins on the healing of critical-size defects. Clin Oral Implants Res. 2004;15:101-11. |
PMid:14731183 |
38. Vajgel A, Mardas N, Farias BC, Petrie A, Cimoes R, Donos N. A systematic review on the critical size defect model. Clin Oral Implants Res. 2014;25:879-93. |
PMid:23742162 |