Fusconi M, Candelori F, Weiss L, Riccio A, Priori R, Businaro R, et al. Qualitative mucin disorders in patients with primary Sjögren's syndrome: a literature review. Med Oral Patol Oral Cir Bucal. 2021 Jan 1;26 (1):e71-7.


doi:10.4317/medoral.23996

https://dx.doi.org/doi:10.4317/medoral.23996


1. Authimoolam SP, Dziubla TD. Biopolymeric Mucin and Synthetic Polymer Analogs: Their Structure, Function and Role. Biomedical Applications Polymers (Basel). 2016;8:71.

https://doi.org/10.3390/polym8030071

PMid:30979166 PMCid:PMC6432556

2. Chaudhury NM, Shirlaw P, Pramanik R, Carpenter GH, Proctor GB. Changes in Saliva Rheological Properties and Mucin Glycosylation in Dry Mouth. J Dent Res. 2015;94:1660-7.

https://doi.org/10.1177/0022034515609070

PMid:26446936 

3. Kim Y, Dalhaimer P, Christian DA, Discher DE. Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology. 2005;16:S484-91.

https://doi.org/10.1088/0957-4484/16/7/024

PMid:21727469 

4. Bradway SD, Bergey EJ, Jones PC, Levine MJ. Oral mucosal pellicle. Adsorption and transpeptidation of salivary components to buccal epithelial cells. Biochem J. 1989;261:887-96.

https://doi.org/10.1042/bj2610887

PMid:2572218 PMCid:PMC1138913

5. Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol. 2007;70:431-57.

https://doi.org/10.1146/annurev.physiol.70.113006.100659

PMid:17850209 

6. Zalewska A, Zwierz K, Żołkowski K, Gindzieński A. Structure and biosynthesis of human salivary mucins. Acta Biochim Pol. 2000;47:1067-79.

https://doi.org/10.18388/abp.2000_3960

PMid:11996097 

7. Karlsson NG, Thomsson KA. Salivary MUC7 is a major carrier of blood group I type O-linked oligosaccharides serving as the scaffold for sialyl Lewis x. Glycobiology. 2009;19:288-300.

https://doi.org/10.1093/glycob/cwn136

PMid:19043084 

8. Leal J, Smyth HDC, Ghosha D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm. 2017;532:555-72.

https://doi.org/10.1016/j.ijpharm.2017.09.018

PMid:28917986 PMCid:PMC5744044

9. Castro I, Sepúlveda D, Cortés J, Quest AF, Barrera MJ, Bahamondes V, et al. Oral dryness in Sjögren's syndrome patients. Not just a question of water. Autoimmun Rev. 2013;12:567-74.

https://doi.org/10.1016/j.autrev.2012.10.018

PMid:23207284 

10. Carlson TL, Lock JY, Carrier RL. Engineering the Mucus Barrier Annu. Rev Biomed Eng. 2018;20:197-220.

https://doi.org/10.1146/annurev-bioeng-062117-121156

PMid:29865871 PMCid:PMC6463277

11. Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, et al. American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren's Syndrome A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol. 2016;69:35-45.

https://doi.org/10.1002/art.39859

PMid:27785888 PMCid:PMC5650478

12. Nederfors T. Xerostomia and hyposalivation. Adv Dent Res. 2000;14:48-56.

https://doi.org/10.1177/08959374000140010701

PMid:11842923 

13. Locker D. Xerostomia in older adults: a longitudinal study. Gerodontology. 1995;12:18-25.

https://doi.org/10.1111/j.1741-2358.1995.tb00125.x

PMid:8626175 

14. Alliende C, Kwon YJ, Brito M, Molina C, Aguilera S, Pérez P, et al. Reduced sulfation of muc5b is linked to xerostomia in patients with Sjögren syndrome. Ann Rheum Dis. 2008;67:1480-7.

https://doi.org/10.1136/ard.2007.078246

PMid:17998215 

15. Ohto T, Uchida H, Yamazaki H, Keino-Masu K, Matsui A, Masu M. Identification of a novel nonlysosomal sulphatase expressed in the floor plate, choroid plexus and cartilage. Genes Cells. 2002;7:173-85.

https://doi.org/10.1046/j.1356-9597.2001.00502.x

PMid:11895481 

16. Pramanik R, Osailan SM, Challacombe SJ, Urquhart D, Proctor GB. Protein and mucin retention on oral mucosal surfaces in dry mouth patients. Eur J Oral Sci. 2010;118:245-53.

https://doi.org/10.1111/j.1600-0722.2010.00728.x

PMid:20572857 

17. Chaudhury NM, Proctor GB, Karlsson NG, Carpenter GH, Flowers SA. Reduced Mucin-7 (Muc7) Sialylation and Altered Saliva Rheology in Sjögren's Syndrome Associated Oral Dryness. Mol Cell Proteomics. 2016;15:1048-59.

https://doi.org/10.1074/mcp.M115.052993

PMid:26631508 PMCid:PMC4813687

18. Gallo A, Vella S, Tuzzolino F, Cuscino N. MicroRNA-mediated Regulation of Mucin-type O-glycosylation Pathway: A Putative Mechanism of Salivary Gland Dysfunction in Sjögren Syndrome. J Rheumatol. 2019;46:1485-94.

https://doi.org/10.3899/jrheum.180549

PMid:30824638 

19. Culp DJ, Stewart C, Wallet SM. Oral epithelial membrane-associated mucins and transcriptional changes with Sjögren's syndrome. Oral Dis. 2019;25:1325-34.

https://doi.org/10.1111/odi.13098

PMid:30920100 

20. Castro I, Albornoz N, Aguilera S, Barrera MJ, González S, Núñez M, et al. Aberrant MUC1 accumulation in salivary glands of Sjögren's syndrome patients is reversed by TUDCA in vitro. Rheumatology (Oxford). 2020;59:742-53.

https://doi.org/10.1093/rheumatology/kez316

PMid:31377809 

21. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76-85.

https://doi.org/10.1016/0003-2697(85)90442-7

PMid:3843705

22. Bahamondes V, Albornoz A, Aguilera S, Alliende C, Molina C, Castro I, et al. Changes in Rab3D expression and distribution in the acini of Sjögren's syndrome patients are associated with loss of cell polarity and secretory dysfunction. Arthritis Rheum. 2011;63:3126-35.

https://doi.org/10.1002/art.30500

PMid:21702009 

23. Goicovich E, Molina C, Pérez P, Aguilera S, Fernández J, Olea N, et al. Enhanced degradation of proteins of the basal lamina and stroma by matrix metalloproteinases from the salivary glands of Sjögren's syndrome patients: correlation with reduced structural integrity of acini and ducts. Arthritis Rheum. 2003;48:2573-84.

https://doi.org/10.1002/art.11178

PMid:13130477 

24. Ewert P, Aguilera S, Alliende C, Kwon YJ, Albornoz A, Molina C, et al. Disruption of tight junction structure in salivary glands from Sjögren's syndrome patients is linked to proinflammatory cytokine exposure. Arthritis Rheum. 2010;62:1280-9.

https://doi.org/10.1002/art.27362

PMid:20131287 

25. Barrera MJ, Sánchez M, Aguilera S, Alliende C, Bahamondes V, Molina C, et al. Aberrant localization of fusion receptors involved in regulated exocytosis in salivary glands of Sjögren's syndrome patients is linked to ectopic mucin secretion. J Autoimmun. 2012;39:83-92.

https://doi.org/10.1016/j.jaut.2012.01.011

PMid:22285554 

26. Cosen-Binker LI, Binker M, Wang CC, Hong W, Gaisano HY. VAMP8 is the v-SNARE that mediates basolateral exocytosis in a mouse model of alcoholic pancreatitis. J Clin Invest. 2008;118:2535e51.

https://doi.org/10.1172/JCI34672

PMid:18535671 

27. Barrera MJ, Aguilera S, Veerman E, Quest AF, Díaz-Jiménez D, Urzúa U, et al. Salivary mucins induce a Toll-like receptor 4- mediated pro-inflammatory response in human submandibular salivary cells: are mucins involved in Sjögren's syndrome?. Rheumatology. 2015;54:1518-27.

https://doi.org/10.1093/rheumatology/kev026

PMid:25802401 

28. Verstappen GM, Corneth OBJ, Bootsma H, Kroese FGM. Th17 cells in primary Sjögren's syndrome: Pathogenicity and plasticity. J Autoimmun. 2018;87:16-25.

https://doi.org/10.1016/j.jaut.2017.11.003

PMid:29191572 

29. Chisholm DM, Mason DK. Labial salivary gland biopsy in Sjögren's disease. J Clin Pathol. 1968;21:656-60.

https://doi.org/10.1136/jcp.21.5.656

PMid:5697370 PMCid:PMC473887