Bittencourt MAV, Sá Mafra PHd, Julia RS, Travençolo BAN, Silva PUJ, Blumenberg C, et al. Accuracy of computer-aided image analysis in the diagnosis of odontogenic cysts: A systematic review. Med Oral Patol Oral Cir Bucal. 2021 May 1;26 (3):e368-78.

doi:10.4317/medoral.24238

https://dx.doi.org/doi:10.4317/medoral.24238


1. Hisatomi M, Asaumi J, Konouchi H, Shigehara H, Yanagi Y, Kishi K. MR imaging of epithelial cysts of the oral and maxillofacial region. Eur J Radiol. 2003;48:178-82.

https://doi.org/10.1016/S0720-048X(02)00218-8

PMid:14680910

2. Weber AL. Imaging of cysts and odontogenic tumors of the jaw: definition and classification. Radiol Clin North Am. 1993;31:101-20.

PMid:8419968

3. Gijbels F, Debaveye D, Vanderstappen M, Jacobs R. Digital radiographic equipment in the Belgian dental office. Radiat Prot Dosimetry. 2005;117:309-12.

https://doi.org/10.1093/rpd/nci761

PMid:16461489 

4. Ilgüy D, Ilgüy M, Dinçer S, Bayirli G. Survey of dental radiological practice in Turkey. Dentomaxillofac Radiol. 2005;34:222-7.

https://doi.org/10.1259/dmfr/22885703

PMid:15961596 

5. Svenson B, Ståhlnacke K, Karlsson R, Fält A. Dentists' use of digital radiographic techniques: Part I - intraoral X-ray: a questionnaire study of Swedish dentists. Acta Odontol Scand. 2018;76:111-8.

https://doi.org/10.1080/00016357.2017.1387930

PMid:29019273 

6. Philipsen HP, Reichart PA. Classification of odontogenic tumours: a historical review. J Oral Pathol Med. 2006;35:525-9.

https://doi.org/10.1111/j.1600-0714.2006.00470.x

PMid:16968232 

7. Singh H, Schiff GD, Graber ML, Onakpoya I, Thompson MJ. The global burden of diagnostic errors in primary care. BMJ Qual Saf. 2017;26:484-94.

https://doi.org/10.1136/bmjqs-2016-005401

PMid:27530239 PMCid:PMC5502242

8. Flores A, Rysavy S, Enciso R, Okada K. Non-invasive differential diagnosis of dental periapical lesions in cone-beam CT. Med Phys. 2009;42:566-9.

https://doi.org/10.1109/ISBI.2009.5193110

PMid:25832055

9. Eramian M, Daley M, Neilson D, Daley T. Segmentation of epithelium in H&E stained odontogenic cysts. J Microsc. 2011;244:273-92.

https://doi.org/10.1111/j.1365-2818.2011.03535.x

PMid:21974807 

10. Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007;31:198-211.

https://doi.org/10.1016/j.compmedimag.2007.02.002

PMid:17349778 PMCid:PMC1955762

11. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88.

https://doi.org/10.1016/j.media.2017.07.005

PMid:28778026 

12. Xing F, Xie Y, Su H, Liu F, Yang L. Deep learning in microscopy image analysis: a survey. IEEE Transactions Neural Networks Learning Systems. 2018;29:4550-68.

https://doi.org/10.1109/TNNLS.2017.2766168

PMid:29989994 

13. Doi K. Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol. 2005;78:S3-19.

https://doi.org/10.1259/bjr/82933343

PMid:15917443 

14. Nakamoto T, Taguchi A, Ohtsuka M, Suei Y, Fujita M, Tsuda M, et al. A computer-aided diagnosis system to screen for osteoporosis using dental panoramic radiographs. Dentomaxillofac Radiol. 2008;37:274-81.

https://doi.org/10.1259/dmfr/68621207

PMid:18606749 

15. Eadie LH, Taylor P, Gibson AP. A systematic review of computer-assisted diagnosis in diagnostic cancer imaging. Eur J Radiol. 2012;81:e70-6.

https://doi.org/10.1016/j.ejrad.2011.01.098

PMid:21345631 

16. Qin C, Yao D, Shi Y, Song Z. Computer-aided detection in chest radiography based on artificial intelligence: a survey. Biomed Eng Online. 2018;17:113.

https://doi.org/10.1186/s12938-018-0544-y

PMid:30134902 PMCid:PMC6103992

17. Yilmaz E, Kayikcioglu T, Kayipmaz S. Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Comput Methods Programs Biomed. 2017;146:91-100.

https://doi.org/10.1016/j.cmpb.2017.05.012

PMid:28688493 

18. Landini G. Quantitative analysis of the epithelial lining architecture in radicular cysts and odontogenic keratocysts. Head Face Med. 2006;2:4.

https://doi.org/10.1186/1746-160X-2-4

PMid:16503983 PMCid:PMC1386655

19. Han JW, Breckon T, Randell D, Landini G. Radicular cysts and odontogenic keratocysts epithelia classification using cascaded Haar classifiers. Proceedings of the MIUA. 2008;2008.

20. Frydenlund A, Eramian M, Daley T. Automated classification of four types of developmental odontogenic cysts. Comput Med Imaging Graph. 2014;38:151-62.

https://doi.org/10.1016/j.compmedimag.2013.12.002

PMid:24411103 

21. Florindo JB, Bruno OM, Landini G. Morphological classification of odontogenic keratocysts using Bouligand-Minkowski fractal descriptors. Comput Biol Med. 2017;81:1-10.

https://doi.org/10.1016/j.compbiomed.2016.12.003

PMid:27992735 

22. Sakamoto K, Morita K, Ikeda T, Kayamori K. Deep-learning-based identification of odontogenic keratocysts in hematoxylin- and eosin-stained jaw cyst specimens. ArXiv. 2019;abs/1901.03857.

23. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264-9.

https://doi.org/10.7326/0003-4819-151-4-200908180-00135

PMid:19622511 

24. Campbell JM, Klugar M, Ding S, Carmody DP, Hakonsen SJ, Jadotte YT, et al. Diagnostic test accuracy: methods for systematic review and meta-analysis. Int J Evid Based Healthc. 2015;13:154-62.

https://doi.org/10.1097/XEB.0000000000000061

PMid:26355602 

25. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statist Med. 2002;21:1539-58.

https://doi.org/10.1002/sim.1186

PMid:12111919 

26. Wiener F, Laufer D, Ribak A. Computer-aided diagnosis of odontogenic lesions. Int J Oral Maxillofac Surg. 1986;15:592-6.

https://doi.org/10.1016/S0300-9785(86)80065-5

PMid:3097187

27. Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221-48.

https://doi.org/10.1146/annurev-bioeng-071516-044442

PMid:28301734 PMCid:PMC5479722

28. Feng Y, Zhang L, Yi Z. Breast cancer cell nuclei classification in histopathology images using deep neural networks. Int J Comput Assist Radiol Surg. 2018;13:179-91.

https://doi.org/10.1007/s11548-017-1663-9

PMid:28861708 

29. Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep. 2018;8:3395.

https://doi.org/10.1038/s41598-018-21758-3

PMid:29467373 PMCid:PMC5821847

30. Okada K, Rysavy S, Flores A, Linguraru MG. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans. Med Phys. 2015;42:1653-65.

https://doi.org/10.1118/1.4914418

PMid:25832055 

31. Silva VKS, Vieira WA, Bernardino IM, Travençolo BAN, Bittencourt MAV, Blumenberg C, et al. Accuracy of computer-assisted image analysis in the diagnosis of maxillofacial radiolucent lesions: a systematic review and meta-analysis. Dentomaxillofac Radiol. 2020;49:20190204.

https://doi.org/10.1259/dmfr.20190204

PMid:31709811 

32. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-44.

https://doi.org/10.1038/nature14539

PMid:26017442 

33. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9:611-29.

https://doi.org/10.1007/s13244-018-0639-9

PMid:29934920 PMCid:PMC6108980