Yang H, Sun C, Wang X, Wang T, Xie C, Li Z. Identification of ferroptosis-related diagnostic markers in primary Sjögren's syndrome based on machine learning. Med Oral Patol Oral Cir Bucal. 2024 Mar 1;29 (2):e203-10.


doi:10.4317/medoral.26190

https://dx.doi.org/doi:10.4317/medoral.26190


1. Fox RI. Sjögren's syndrome. Lancet. 2005;366:321-31.

https://doi.org/10.1016/S0140-6736(05)66990-5

PMid:16039337 

2. Meijer JM, Meiners PM, Huddleston Slater JJ, Spijkervet FK, Kallenberg CG, Vissink A, et al. Health-related quality of life, employment and disability in patients with Sjogren's syndrome. Rheumatology. 2009;48:1077-82.

https://doi.org/10.1093/rheumatology/kep141

PMid:19553376 

3. Zeng Q, Wen J, Zheng L, Zeng W, Chen S, Zhao C. Identification of immune-related diagnostic markers in primary Sjögren's syndrome based on bioinformatics analysis. Ann Transl Med. 2022;10:487.

https://doi.org/10.21037/atm-22-1494

PMid:35571446 PMCid:PMC9096389

4. Zou Y, Schreiber SL. Progress in Understanding Ferroptosis and Challenges in Its Targeting for Therapeutic Benefit. Cell Chem Biol. 2020;27:463-71.

https://doi.org/10.1016/j.chembiol.2020.03.015

PMid:32302583 PMCid:PMC7346472

5. Luoqian J, Yang W, Ding X, Tuo QZ, Xiang Z, Zheng Z, et al. Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. Cell Mol Immunol. 2022;19:913-24.

https://doi.org/10.1038/s41423-022-00883-0

PMid:35676325 PMCid:PMC9338013

6. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266-82.

https://doi.org/10.1038/s41580-020-00324-8

PMid:33495651 PMCid:PMC8142022

7. Li P, Jiang M, Li K, Li H, Zhou Y, Xiao X, et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol. 2021;22:1107-17.

https://doi.org/10.1038/s41590-021-00993-3

PMid:34385713 PMCid:PMC8609402

8. Li N, Li Y, Hu J, Wu Y, Yang J, Fan H, et al. A Link Between Mitochondrial Dysfunction and the Immune Microenvironment of Salivary Glands in Primary Sjogren's Syndrome. Front Immunol. 2022;13:845209.

https://doi.org/10.3389/fimmu.2022.845209

PMid:35359935 PMCid:PMC8964148

9. Seror R, Nocturne G, Mariette X. Current and future therapies for primary Sjögren syndrome. Nat Rev Rheumatol. 2021;17:475-86.

https://doi.org/10.1038/s41584-021-00634-x

PMid:34188206 

10. Verstappen GM, Pringle S, Bootsma H, Kroese FGM. Epithelial-immune cell interplay in primary Sjögren syndrome salivary gland pathogenesis. Nat Rev Rheumatol. 2021;17:333-48.

https://doi.org/10.1038/s41584-021-00605-2

PMid:33911236 PMCid:PMC8081003

11. Thorlacius GE, Björk A, Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol. 2023;19:288-306.

https://doi.org/10.1038/s41584-023-00932-6

PMid:36914790 PMCid:PMC10010657

12. Saraux A, Devauchelle-Pensec V. Primary Sjögren's syndrome: new beginning for evidence-based trials. Lancet. 2022;399:121-2.

https://doi.org/10.1016/S0140-6736(21)02644-1

PMid:34861169 

13. Felten R, Devauchelle-Pensec V, Seror R, Duffau P, Saadoun D, Hachulla E, et al. Interleukin 6 receptor inhibition in primary Sjögren syndrome: a multicentre double-blind randomised placebo-controlled trial. Ann Rheum Dis. 2021;80:329-38.

https://doi.org/10.1136/annrheumdis-2020-218467

PMid:33208345 

14. Seror R, Baron G, Camus M, Cornec D, Perrodeau E, Bowman SJ, et al. Development and preliminary validation of the Sjögren's Tool for Assessing Response (STAR): a consensual composite score for assessing treatment effect in primary Sjögren's syndrome. Ann Rheum Dis. 2022;81:979-89.

https://doi.org/10.1136/annrheumdis-2021-222054

PMid:35393271 PMCid:PMC9209686

15. Zhu Y, Tao Y, Wu C, Zeng Y, Du H, Xiang Q, et al. Renal Farnesoid X Receptor improves high fructose-induced salt-sensitive hypertension in mice by inhibiting DNM3 to promote nitro oxide production. J Hypertens. 2022;40:1577-88.

https://doi.org/10.1097/HJH.0000000000003189

PMid:35792095 

16. Steen EA, Hermiston ML, Nichols KE, Meyer LK. Digenic Inheritance: Evidence and Gaps in Hemophagocytic Lymphohistiocytosis. Front Immunol. 2021;12:777851.

https://doi.org/10.3389/fimmu.2021.777851

PMid:34868048 PMCid:PMC8635482

17. Gallo A, Jang SI, Ong HL, Perez P, Tandon M, Ambudkar I, et al. Targeting the Ca(2+) Sensor STIM1 by Exosomal Transfer of Ebv-miR-BART13-3p is Associated with Sjögren's Syndrome. EBioMedicine. 2016;10:216-26.

https://doi.org/10.1016/j.ebiom.2016.06.041

PMid:27381477 PMCid:PMC5006644

18. Yu J, Chen Y, Li M, Gao Q, Peng Y, Gong Q, et al. Paeoniflorin down-regulates ATP-induced inflammatory cytokine production and P2X7R expression on peripheral blood mononuclear cells from patients with primary Sjögren's syndrome. Int Immunopharmacol. 2015;28:115-20.

https://doi.org/10.1016/j.intimp.2015.05.023

PMid:26049028 

19. Fasano S, Mauro D, Macaluso F, Xiao F, Zhao Y, Lu L, et al. Pathogenesis of primary Sjögren's syndrome beyond B lymphocytes. Clin Exp Rheumatol. 2020;38 Suppl 126:315-23.

PMid:33095148

20. Du W, Han M, Zhu X, Xiao F, Huang E, Che N, et al. The Multiple Roles of B Cells in the Pathogenesis of Sjögren's Syndrome. Front Immunol. 2021;12:684999.

https://doi.org/10.3389/fimmu.2021.684999

PMid:34168653 PMCid:PMC8217880

21. Verstappen GM, Ice JA, Bootsma H, Pringle S, Haacke EA, de Lange K, et al. Gene expression profiling of epithelium-associated FcRL4(+) B cells in primary Sjögren's syndrome reveals a pathogenic signature. J Autoimmun. 2020;109:102439.

https://doi.org/10.1016/j.jaut.2020.102439

PMid:32201227 PMCid:PMC7337041

22. Lai B, Wu CH, Wu CY, Luo SF, Lai JH. Ferroptosis and Autoimmune Diseases. Front Immunol. 2022;13:916664.

https://doi.org/10.3389/fimmu.2022.916664

PMid:35720308 PMCid:PMC9203688

23. Tonnus W, Belavgeni A, Beuschlein F, Eisenhofer G, Fassnacht M, Kroiss M, et al. The role of regulated necrosis in endocrine diseases. Nat Rev Endocrinol. 2021;17:497-510.

https://doi.org/10.1038/s41574-021-00499-w

PMid:34135504 PMCid:PMC8207819

24. Rothammer N, Woo MS, Bauer S, Binkle-Ladisch L, Di Liberto G, Egervari K, et al. G9a dictates neuronal vulnerability to inflammatory stress via transcriptional control of ferroptosis. Sci Adv. 2022;8:eabm5500.

https://doi.org/10.1126/sciadv.abm5500

PMid:35930635 PMCid:PMC9355351

25. Alli AA, Desai D, Elshika A, Conrad M, Proneth B, Clapp W, et al. Kidney tubular epithelial cell ferroptosis links glomerular injury to tubulointerstitial pathology in lupus nephritis. Clin Immunol. 2023;248:109213.

https://doi.org/10.1016/j.clim.2022.109213

PMid:36566913 

26. He C, Yang Y, Chen Z, Liu S, Lyu T, Zeng L, et al. EZH2 Promotes T Follicular Helper Cell Differentiation Through Enhancing STAT3 Phosphorylation in Patients With Primary Sjögren's Syndrome. Front Immunol. 2022;13:922871.

https://doi.org/10.3389/fimmu.2022.922871

PMid:35795677 PMCid:PMC9252457

27. Wu Y, Yang Y, Qin Y, Wang Y, Feng M, Zhao X, et al. Increased levels of BPI-ANCA in patients with primary Sjögren's syndrome are associated with lung involvement. Clin Biochem. 2020;83:43-8.

https://doi.org/10.1016/j.clinbiochem.2020.05.018

PMid:32502475 

28. Wang X, Bootsma H, Terpstra J, Vissink A, van der Vegt B, Spijkervet FKL, et al. Progenitor cell niche senescence reflects pathology of the parotid salivary gland in primary Sjögren's syndrome. Rheumatology. 2020;59:3003-13.

https://doi.org/10.1093/rheumatology/keaa012

PMid:32159757 PMCid:PMC7516109

29. Cheng L, Li H, Zhan H, Liu Y, Li X, Huang Y, et al. Alterations of m6A RNA methylation regulators contribute to autophagy and immune infiltration in primary Sjögren's syndrome. Front Immunol. 2022;13:949206.

https://doi.org/10.3389/fimmu.2022.949206

PMid:36203590 PMCid:PMC9530814

30. Bodewes ILA, Huijser E, van Helden-Meeuwsen CG, Tas L, Huizinga R, Dalm V, et al. TBK1: A key regulator and potential treatment target for interferon positive Sjögren's syndrome, systemic lupus erythematosus and systemic sclerosis. J Autoimmun. 2018;91:97-102.

https://doi.org/10.1016/j.jaut.2018.02.001

PMid:29673738