Alimoradi N, Einafshar M, Amid R, Hashemi A. Is Acoustic modal analysis a reliable substitution for Osstell® device in dental implant stability assessment? An experimental and finite element analysis study. Med Oral Patol Oral Cir Bucal. 2024 May 1;29 (3):e362-9.

doi:10.4317/medoral.26358

https://dx.doi.org/doi:10.4317/medoral.26358


1. Baggi L, Cappelloni I, Girolamo M. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis. The Journal of Prosthetic Dentistry. 2008;100:422-31.

https://doi.org/10.1016/S0022-3913(08)60259-0

PMid:19033026 

2. Comuzzi L, Tumedei M, Pontes AE. Primary Stability of Dental Implants in Low-Density (10 and 20 pcf) Polyurethane Foam Blocks: Conical vs Cylindrical Implants. International Journal of Environmental Research and Public Health. 2020;17:2617.

https://doi.org/10.3390/ijerph17082617

PMid:19033026 

3. Danza M, Zollino I, Paracchini L. 3D finite element analysis to detect stress distribution: spiral family implants. Journal of Maxillofacial and Oral Surgery. 2009;8:334-9.

https://doi.org/10.1007/s12663-009-0081-0

PMid:23139539 PMCid:PMC3454091

4. Gursoytrak B, Ataoglu H. Use of resonance frequency analysis to evaluate the effects of surface properties on the stability of different implants. Clinical Oral Implants Research. 2020;31:239-45.

https://doi.org/10.1111/clr.13560

PMid:31758589 

5. Aragoneses JM, Suárez A, Brugal VA, Gómez M. Frequency Values and Their Relationship With the Diameter of Dental Implants. In: Prospective Study of 559 Implants. Implant Dentistry. 2019;28:279-88.

https://doi.org/10.1097/ID.0000000000000887

PMid:31124825 

6. Atsumi M, S-h P, Wang HL. Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants. 2007;22:743-54.

PMid:17974108

7. Friberg B, Sennerby L, Roos J. Evaluation of bone density using cutting resistance measurements and microradiography. In: An in vitro study in pig ribs. Clin Oral Implants Res. 1995;6:164-71.

https://doi.org/10.1034/j.1600-0501.1995.060305.x

PMid:7578792 

8. Einafshar M, Hashemi A, Lenthe GH. Homogenized finite element models can accurately predict screw pull-out in continuum materials, but not in porous materials. J Computer Methods Programs in Biomedicine. 2021;202:105966.

https://doi.org/10.1016/j.cmpb.2021.105966

PMid:33662802 

9. Turkyilmaz I, Tumer C, Ozbek EN, Tözüm TF. Relations between the bone density values from computerized tomography, and implant stability parameters: a clinical study of 230 regular platform implants. Journal of Clinical Periodontology. 2007;34:716-22.

https://doi.org/10.1111/j.1600-051X.2007.01112.x

PMid:17635248 

10. Einafshar M, Hashemi A, Lenthe GH. Replacement of Destructive Pull-out Test with Modal Analysis in Primary Fixation Stability Assessment of Spinal Pedicle Screw. Arch Bone Jt Surg. 2022;10:204-12.

PMid:35655738

11. Einafshar M, Hashemi A, Kiapour A. Evaluation of the efficacy of modal analysis in predicting the pullout strength of fixation bone screws. JOR Spine. 2022;5:e1220.

https://doi.org/10.1002/jsp2.1220

PMid:36601373 PMCid:PMC9799086

12. López AB, Martínez JB, Pelayo JL, García CC, Diago MP. Resonance frequency analysis of dental implant stability during the healing period. Med Oral Patol Oral Cir Bucal. 2008;13:E244-7.

PMid:18379449

13. Baftijari D, Benedetti A, Stamatoski A. Influence of Resonance Frequency Analysis (RFA) Measurements for Successful Osseointegration of Dental Implants During the Healing Period and Its Impact on Implant Assessed by Osstell Mentor Device. Open Access Macedonian Journal of Medical Sciences. 2019;7:4110-5.

https://doi.org/10.3889/oamjms.2019.716

PMid:32165961 PMCid:PMC7061400

14. Ito FA, Jorge J, Vargas PA, Lopes MA. Histopathological findings of pleomorphic adenomas of the salivary glands. Med Oral Patol Oral Cir Bucal. 2009;14:E57-61.

PMid:19179950

15. López AB, Diago MP, Cortissoz OM, Martínez IM. Resonance frequency analysis after the placement of 133 dental implants. Med Oral Patol Oral Cir Bucal. 2006;11:E272-6.

PMid:16648767

16. Salvi GE, Lang NP. Diagnostic parameters for monitoring peri-implant conditions. Int J Oral Maxillofac Implants. 2004;19:116-27.

PMid:15635952

17. Huang HM, Chiu CL, Yeh CY. Early detection of implant healing process using resonance frequency analysis. Clinical Oral Implants Research. 2003;14:437-43.

https://doi.org/10.1034/j.1600-0501.2003.00818.x

PMid:12869006 

18. Lee SY, Huang HM, Lin CY, Shih YH. In Vivo and In Vitro Natural Frequency Analysis of Periodontal Conditions: An Innovative Method. Journal of Periodontology. 2000;71:632-40.

https://doi.org/10.1902/jop.2000.71.4.632

PMid:10807129 

19. Kim DS, Lee WJ, Choi SC. Comparison of dental implant stabilities by impact response and resonance frequencies using artificial bone. Med Eng Phys. 2014;36:715-20.

https://doi.org/10.1016/j.medengphy.2013.12.004

PMid:24378382 

20. Gehrke SA, Marin GW. Biomechanical evaluation of dental implants with three different designs: Removal torque and resonance frequency analysis in rabbits. Ann Anat. 2015;199:30-5.

https://doi.org/10.1016/j.aanat.2014.07.009

PMid:25224495 

21. Tanimoto Y, Hayakawa T, Nemoto K. Mode superposition transient dynamic analysis for dental implants with stress-absorbing elements: a finite element analysis. Dental materials. 2006;25:480-6.

https://doi.org/10.4012/dmj.25.480

PMid:17076317 

22. Hernandez BA, Freitas JP, Capello Sousa EA. Fatigue life estimation of dental implants using a combination of the finite element method and traditional fatigue criteria. Proc Inst Mech Eng H. 2023;237:975-84.

https://doi.org/10.1177/09544119231186097

PMid:37458260 

23. Zanetti EM, Ciaramella S, Calì M. Modal analysis for implant stability assessment: Sensitivity of this methodology for different implant designs. Dent Mater. 2018;34:1235-45.

https://doi.org/10.1016/j.dental.2018.05.016

PMid:29891196 

24. Einafshar M, Shahrezaee M, Shahrezaee MH, Sharifzadeh S. Biomechanical Evaluation of Temperature Rising and Applied Force in Controlled Cortical Bone Drilling: an Animal in Vitro Study. Jt Surg. 2020;8:605-12.

PMid:33088862

25. Pan CY, Liu PH, Tseng YC. Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic mini-implants. Journal of Dental Sciences. 2019;14:383-8.

https://doi.org/10.1016/j.jds.2019.06.002

PMid:31890126 PMCid:PMC6921117

26. Huang HM, Lee SY, Yeh CY, Lin CT. Resonance frequency assessment of dental implant stability with various bone qualities: a numerical approach. Clinical Oral Implants Research. 2002;13:65-74.

https://doi.org/10.1034/j.1600-0501.2002.130108.x

PMid:12005147 

27. Kästel I, Quincey G, Neugebauer J. Does the manual insertion torque of smartpegs affect the outcome of implant stability quotients (ISQ) during resonance frequency analysis (RFA)?. Int J Implant Dent. 2019;5:42.

https://doi.org/10.1186/s40729-019-0195-1

PMid:31828457 PMCid:PMC6906278

28. Huang HM, Pan LC, Lee SY. Assessing the implant/bone interface by using natural frequency analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90:285-91.

https://doi.org/10.1067/moe.2000.108918

PMid:10982948