Lin H, Chen J, Hu Y, Li W. Embracing technological revolution: A panorama of machine learning in dentistry. Med Oral Patol Oral Cir Bucal. 2024 Nov 1;29 (6):e742-9.


doi:10.4317/medoral.26679

https://dx.doi.org/doi:10.4317/medoral.26679


1. Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2021;23:40-55.

https://doi.org/10.1038/s41580-021-00407-0

PMid:34518686 

2. Khanagar SB, Al-ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry - A systematic review. J Dent Sci. 2021;16:508-22.

https://doi.org/10.1016/j.jds.2020.06.019

PMid:33384840 PMCid:PMC7770297

3. Kuhnisch J, Meyer O, Hesenius M, Hickel R, Gruhn V. Caries Detection on Intraoral Images Using Artificial Intelligence. J Dent Res. 2022;101:158-65.

https://doi.org/10.1177/00220345211032524

PMid:34416824 PMCid:PMC8808002

4. Zhu H, Cao Z, Lian L, Ye G, Gao H, Wu J. CariesNet: a deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image. Neural Comput Appl. 2022.

https://doi.org/10.1007/s00521-021-06684-2

PMid:35017793 PMCid:PMC8736291

5. Lee S, Oh SI, Jo J, Kang S, Shin Y, Park JW. Deep learning for early dental caries detection in bitewing radiographs. Sci Rep. 2021;11:16807.

https://doi.org/10.1038/s41598-021-96368-7

PMid:34413414 PMCid:PMC8376948

6. Toledo Reyes L, Knorst JK, Ortiz FR, Brondani B, Emmanuelli B, Saraiva Guedes R, et al. Early Childhood Predictors for Dental Caries: A Machine Learning Approach. J Dent Res. 2023;102:999-1006.

https://doi.org/10.1177/00220345231170535

PMid:37246832 

7. Hu Z, Cao D, Hu Y, Wang B, Zhang Y, Tang R, et al. Diagnosis of in vivo vertical root fracture using deep learning on cone-beam CT images. BMC Oral Health. 2022;22:382.

https://doi.org/10.1186/s12903-022-02422-9

PMid:36064682 PMCid:PMC9446797

8. Yuce F, Öziç MÜ, Tassoker M. Detection of pulpal calcifications on bite-wing radiographs using deep learning. Clin Oral Investig. 2022;27:2679-89.

https://doi.org/10.1007/s00784-022-04839-6

PMid:36564651 

9. Zheng L, Wang H, Mei L, Chen Q, Zhang Y, Zhang H. Artificial intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks. Ann Transl Med. 2021;9:763.

https://doi.org/10.21037/atm-21-119

PMid:34268376 PMCid:PMC8246233

10. Ver Berne J, Saadi SB, Politis C, Jacobs R. A deep learning approach for radiological detection and classification of radicular cysts and periapical granulomas. J Dent. 2023;135:104581.

https://doi.org/10.1016/j.jdent.2023.104581

PMid:37295547 

11. Yang S, Lee H, Jang B, Kim KD, Kim J, Kim H, et al. Development and Validation of a Visually Explainable Deep Learning Model for Classification of C-shaped Canals of the Mandibular Second Molars in Periapical and Panoramic Dental Radiographs. J Endod. 2022;48:914-21.

https://doi.org/10.1016/j.joen.2022.04.007

PMid:35427635 

12. Li W, Liang Y, Zhang X, Liu C, He L, Miao L, et al. A deep learning approach to automatic gingivitis screening based on classification and localization in RGB photos. Sci Rep. 2021;11:16831.

https://doi.org/10.1038/s41598-021-96091-3

PMid:34413332 PMCid:PMC8376991

13. Kim EH, Kim S, Kim HJ, Jeong Ho, Lee J, Jang J, et al. Prediction of Chronic Periodontitis Severity Using Machine Learning Models Based On Salivary Bacterial Copy Number. Front Cell Infect Microbiol. 2020;10:571515.

https://doi.org/10.3389/fcimb.2020.571515

PMid:33304856 PMCid:PMC7701273

14. Troiano G, Nibali L, Petsos H, Eickholz P, Saleh MHA, Santamaria P, et al. Development and international validation of logistic regression and machinelearning models for the prediction of 10year molar loss. J Clin Periodontol. 2022;50:348-57.

https://doi.org/10.1111/jcpe.13739

PMid:36305042 

15. Lee CT, Kabir T, Nelson J, Sheng S, Meng HW, Van Dyke TE, et al. Use of the deep learning approach to measure alveolar bone level. J Clin Periodontol. 2021;49:260-9.

https://doi.org/10.1111/jcpe.13574

PMid:34879437 PMCid:PMC9026777

16. Idrees M, Farah CS, Shearston K, Kujan O. A machinelearning algorithm for the reliable identification of oral lichen planus. J Oral Pathol Med. 2021;50:946-53.

https://doi.org/10.1111/jop.13226

PMid:34358361 

17. Zhou L, Wang H, Zhang H, Wang F, Wang W, Cao Q, et al. Diagnostic markers and potential therapeutic agents for Sjögren's syndrome screened through multiple machine learning and molecular docking. Clin Exp Immunol. 2023;212:224-38.

https://doi.org/10.1093/cei/uxad037

PMid:36988140 PMCid:PMC10243915

18. Cai X, Li L, Yu F, Guo R, Zhou X, Zhang F, et al. Development of a Pathomics-Based Model for the Prediction of Malignant Transformation in Oral Leukoplakia. Lab Invest. 2023;103:100173.

https://doi.org/10.1016/j.labinv.2023.100173

PMid:37164265 

19. Kim MJ, Kim PJ, Kim HG, Kho HS. Prediction of treatment outcome in burning mouth syndrome patients using machine learning based on clinical data. Sci Rep. 2021;11:15396.

https://doi.org/10.1038/s41598-021-94940-9

PMid:34321575 PMCid:PMC8319111

20. Suhail S, Harris K, Sinha G, Schmidt M, Durgekar S, Mehta S, et al. Learning Cephalometric Landmarks for Diagnostic Features Using Regression Trees. Bioengineering (Basel). 2022;9:617.

https://doi.org/10.3390/bioengineering9110617

PMid:36354530 PMCid:PMC9687964

21. Suhail Y, Upadhyay M, Chhibber A, Kshitiz. Machine Learning for the Diagnosis of Orthodontic Extractions: A Computational Analysis Using Ensemble Learning. Bioengineering (Basel). 2020;7:55.

https://doi.org/10.3390/bioengineering7020055

PMid:32545428 PMCid:PMC7355468

22. Prasad J, Mallikarjunaiah DR, Shetty A, Gandedkar N, Chikkamuniswamy AB, Shivashankar PC. Machine Learning Predictive Model as Clinical Decision Support System in Orthodontic Treatment Planning. Dent J (Basel). 2022;11:1.

https://doi.org/10.3390/dj11010001

PMid:36661538 PMCid:PMC9858447

23. El Bsat AR, Shammas E, Asmar D, Sakr GE, Zeno KG, Macari AT, et al. Semantic Segmentation of Maxillary Teeth and Palatal Rugae in Two-Dimensional Images. Diagnostics (Basel). 2022;12:2176.

https://doi.org/10.3390/diagnostics12092176

PMid:36140577 PMCid:PMC9498073

24. Park YS, Choi JH, Kim Y, Choi SH, Lee JH, Kim KH, et al. Deep Learning-Based Prediction of the 3D Postorthodontic Facial Changes. J Dent Res. 2022;101:1372-9.

https://doi.org/10.1177/00220345221106676

PMid:35774018 

25. Wang X, Zhao X, Song G, Niu J, Xu T. Machine Learning-Based Evaluation on Craniodentofacial Morphological Harmony of Patients After Orthodontic Treatment. Front Physiol. 2022;13:862847.

https://doi.org/10.3389/fphys.2022.862847

PMid:35615666 PMCid:PMC9124867

26. Kim H, Shim E, Park J, Kim YJ, Lee U, Kim Y. Web-based fully automated cephalometric analysis by deep learning. Comput Methods Programs Biomed. 2020;194:105513.

https://doi.org/10.1016/j.cmpb.2020.105513

PMid:32403052 

27. Engels P, Meyer O, Schönewolf J, Schlickenrieder A, Hickel R, Hesenius M, et al. Automated detection of posterior restorations in permanent teeth using artificial intelligence on intraoral photographs. J Dent. 2022;121:104124.

https://doi.org/10.1016/j.jdent.2022.104124

PMid:35395346 

28. Takahashi T, Nozaki K, Gonda T, Ikebe K. A system for designing removable partial dentures using artificial intelligence. Part 1. Classification of partially edentulous arches using a convolutional neural network. J Prosthodont Res. 2021;65:115-8.

https://doi.org/10.2186/jpr.JPOR_2019_354

PMid:32938860 

29. Cui Q, Chen Q, Liu P, Liu D, Wen Z. Clinical decision support model for tooth extraction therapy derived from electronic dental records. J Prosthet Dent. 2021;126:83-90.

https://doi.org/10.1016/j.prosdent.2020.04.010

PMid:32703604 

30. Yu D, Hu J, Feng Z, Song M, Zhu H. Deep learning based diagnosis for cysts and tumors of jaw with massive healthy samples. Sci Rep. 2022;12:1855.

https://doi.org/10.1038/s41598-022-05913-5

PMid:35115624 PMCid:PMC8814152

31. Fu Q, Chen Y, Li Z, Jing Q, Hu C, Liu H, et al. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study. EClinicalMedicine. 2020;27:100558.

https://doi.org/10.1016/j.eclinm.2020.100558

PMid:33150326 PMCid:PMC7599313

32. McRae MP, Modak SS, Simmons GW, Trochesset DA, Kerr AR, Thornhill MH, et al. Pointofcare oral cytology tool for the screening and assessment of potentially malignant oral lesions. Cancer Cytopathol. 2020;128:207-20.

https://doi.org/10.1002/cncy.22236

PMid:32032477 PMCid:PMC7078980

33. Howard FM, Kochanny S, Koshy M, Spiotto M, Pearson AT. Machine Learning-Guided Adjuvant Treatment of Head and Neck Cancer. JAMA Netw Open. 2020;3:e2025881.

https://doi.org/10.1001/jamanetworkopen.2020.25881

PMid:33211108 PMCid:PMC7677764

34. Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res. 2020;99:769-74.

https://doi.org/10.1177/0022034520915714

PMid:32315260 PMCid:PMC7309354

35. Wiens J, Shenoy ES. Machine Learning for Healthcare: On the Verge of a Major Shift in Healthcare Epidemiology. Clin Infect Dis. 2018;66:149-53.

https://doi.org/10.1093/cid/cix731

PMid:29020316 PMCid:PMC5850539

36. Narwane SV, Sawarkar SD. Is handling unbalanced datasets for machine learning uplifts system performance?: A case of diabetic prediction. Diabetes Metab Syndr. 2022;16:102609.

https://doi.org/10.1016/j.dsx.2022.102609

PMid:36099677 

37. Magrabi F, Ammenwerth E, McNair JB, De Keizer NF, Hypponen H, Nykanen P, et al. Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications. Yearb Med Inform. 2019;28:128-34.

https://doi.org/10.1055/s-0039-1677903

PMid:31022752 PMCid:PMC6697499