Gupta S, Shetty S, Natarajan S, Nambiar S, MV Ashith, Agarwal S. A comparative evaluation of concordance and speed between smartphone app-based and artificial intelligence web-based cephalometric tracing software with the manual tracing method: A cross-sectional study. J Clin Exp Dent. 2024;16(1):e11-7.

 

doi:10.4317/jced.60899

https://doi.org/10.4317/jced.60899

________

 

References

1. Albarakati SF, Kula KS, Ghoneima AA. The reliability and reproducibility of cephalometric measurements: a comparison of conventional and digital methods. Dentomaxillofac Radiol. 2012;41:11-17.
https://doi.org/10.1259/dmfr/37010910
PMid:22184624 PMCid:PMC3520271

 

2. Gupta G, Vaid NR. The World of Orthodontic apps. APOS Trends Orthod. 2017;7:73-79.
https://doi.org/10.4103/2321-1407.202608

 

3. Livas C, Delli K, Spijkervet FKL, Vissink A, Dijkstra PU. Concurrent validity and reliability of cephalometric analysis using smartphone apps and computer software. Angle Orthod. 2019;89:889-896.
https://doi.org/10.2319/021919-124.1
PMid:31282737 PMCid:PMC8109163

 

4. Celik E, Polat-Ozsoy O, Toygar Memikoglu TU. Comparison of cephalometric measurements with digital versus conventional cephalometric analysis. Eur J Orthod. 2009;31:241-246.
https://doi.org/10.1093/ejo/cjn105
PMid:19237509

 

5. Mosleh MAA, Baba MS, Malek S, Almaktari RA. Ceph-X: development and evaluation of 2D cephalometric system. BMC Bioinformatics. 2016;17:193-201.
https://doi.org/10.1186/s12859-016-1370-5
PMid:28155649 PMCid:PMC5259857

 

6. Redmon J, Farhadi A. Yolov3: an incremental improvement. arXiv. 2018. https://arxiv.org/pdf/1804.02767.pdf. Accessed April 19, 2023.

 

7. Liu W, Anguelov D, Erhan D, Szegedy C, Reed SE, Fu CY, et al. SSD: Single Shot MultiBox Detector. European Conf Comput Vis. 2016:21-37. Springer International Publishing. https://arxiv.org/pdf/1512.02325.pdf. Accessed April 19, 2023.
https://doi.org/10.1007/978-3-319-46448-0_2

 

8. Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, Srinivasan G, Aljanabi MNA, Donatelli RE, Lee SJ. Automated identification of cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019;89:903-909.
https://doi.org/10.2319/022019-127.1
PMid:31282738 PMCid:PMC8109157

 

9. Duran, GS, Gökmen, Ş, Topsakal, KG, Görgülü, S. Evaluation of the accuracy of fully automatic cephalometric analysis software with artificial intelligence algorithm. Orthod Craniofac Res. 2023;26:481-490.
https://doi.org/10.1111/ocr.12633
PMid:36648374

 

10. El-Dawlatly M, Attia KH, Abdelghaffar AY, Mostafa YA, Abd El-Ghafour M. Preciseness of artificial intelligence for lateral cephalometric measurements. J Orofac Orthop. 2023;1-7.
https://doi.org/10.1007/s00056-023-00459-1

 

11. Shettigar P, Shetty S, Naik RD, Basavaraddi SM, Patil AK. A Comparative Evaluation of Reliability of an Android-based App and Computerized Cephalometric Tracing Program for Orthodontic Cephalometric Analysis. Biomed Pharmacol J. 2019;12:341-346.
https://doi.org/10.13005/bpj/1645

 

12. Schulze RKW, Gloede MB, Doll GM. Landmark identification on direct digital versus film-based cephalometric radiographs: A human skull study. Am J Orthod Dentofac Orthop. 2002;122:635-642.
https://doi.org/10.1067/mod.2002.129191
PMid:12490875

 

13. Paixão MB, Sobral MC, Vogel CJ, de Araujo TM. Comparative study between manual and digital cephalometric tracing using Dolphin Imaging software with lateral radiographs. Dental Press J Orthod. 2010;15:123-130.
https://doi.org/10.1590/S2176-94512010000600016

 

14. Moreno M, Gebeile-Chauty S. Comparative study of two software for the detection of cephalometric landmarks by artificial intelligence. Orthod Fr. 2022;93:41-61.
https://doi.org/10.1684/orthodfr.2022.73
PMid:35785943

 

15. Tsolakis IA, Tsolakis AI, Elshebiny T, Matthaios S, Palomo JM. Comparing a Fully Automated Cephalometric Tracing Method to a Manual Tracing Method for Orthodontic Diagnosis. J Clin Med. 2022;11:6854.
https://doi.org/10.3390/jcm11226854
PMid:36431331 PMCid:PMC9693212

 

16. Lagravère MO, Low C, Flores-Mir C, Chung R, Carey JP, Heo G, et al. Intraexaminer and interexaminer reliabilities of landmark identification on digitized lateral cephalograms and formatted 3-dimensional cone-beam computerized tomography images. Am J Orthod Dentofac Orthop. 2010;137:598-604.
https://doi.org/10.1016/j.ajodo.2008.07.018
PMid:20451778

 

17. Baumrind S, Frantz RC. The reliability of head film measurements. Am J Orthod. 1971;60:505-517.
https://doi.org/10.1016/0002-9416(71)90116-3
PMid:5286677

 

18. Trpkova B, Major P, Prasad N, Nebbe B. Cephalometric landmarks identification and reproducibility: a meta analysis. Am J Orthod Dentofacial Orthop. 1997;112:165-170.
https://doi.org/10.1016/S0889-5406(97)70242-7
PMid:9267228

 

19. Chan CK, Tng TH, Hägg U, Cooke MS. Effects of cephalometric landmark validity on incisor angulation. Am J Orthod Dentofac Orthop. 1994;106:487-495.
https://doi.org/10.1016/S0889-5406(94)70071-0
PMid:7977189

 

20. Leonardi R, Giordano D, Maiorana F, Spampinato C. Automatic cephalometric analysis: A systematic review. Angle Orthod. 2008;78:145-151.
https://doi.org/10.2319/120506-491.1
PMid:18193970

 

21. Prince STT, Srinivasan D, Duraisamy S, Kannan R, Rajaram K. Reproducibility of linear and angular cephalometric measurements obtained by an artificial-intelligence assisted software (WebCeph) in comparison with digital software (AutoCEPH) and manual tracing method. Dental Press J Orthod. 2023;28:1-21.
https://doi.org/10.1590/2177-6709.28.1.e2321214.oar
PMid:37018830 PMCid:PMC10069747

 

22. Gupta SP, Dahal S, Rauniyar S. Reproducibility and speed of cephalometric tracing between manual versus digital method. Orthodontic Journal of Nepal. 2021;11:39-44.
https://doi.org/10.3126/ojn.v11i2.43275