Almarhoumi AA. Accuracy of Artificial Intelligence in Predicting Facial Changes Post-Orthognathic Surgery: A Comprehensive Scoping Review. J Clin Exp Dent. 2024;16(5):e624-33.

 

doi:10.4317/jced.61500

https://doi.org/10.4317/jced.61500

______

 

References

1. Kaplan A, Haenlein M. Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz. 2019;62:15-25.
https://doi.org/10.1016/j.bushor.2018.08.004

 

2. Benke K, Benke G. Artificial intelligence and big data in public health. Int J Environ Res Public Health. 2018;15:2796.
https://doi.org/10.3390/ijerph15122796
PMid:30544648 PMCid:PMC6313588

 

3. Wang XL, Liu J, Li ZQ, Luan ZL. Application of physical examination data on health analysis and intelligent diagnosis. Biomed Res Int. 2021;2021:8828677.
https://doi.org/10.1155/2021/8828677
PMid:34235223 PMCid:PMC8216799

 

4. Choi HI, Jung SK, Baek SH, Lim WH, Ahn SJ, Yang IH, et al. Artificial intelligent model with neural network machine learning for the diagnosis of orthognathic surgery. J Craniofac Surg. 2019;30:1986-9.
https://doi.org/10.1097/SCS.0000000000005650
PMid:31205280

 

5. Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry. J Dent Res. 2021;100:232-44.
https://doi.org/10.1177/0022034520969115
PMid:33118431

 

6. Ramesh AN, Kambhampati C, Monson JRT, Drew PJ. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004;86:334.
https://doi.org/10.1308/147870804290
PMid:15333167 PMCid:PMC1964229

 

7. Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, et al. A state-of-the-art survey on deep learning theory and architectures. Electronics. 2019;8:292.
https://doi.org/10.3390/electronics8030292

 

8. Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal. 2000;22:717-27.
https://doi.org/10.1016/S0731-7085(99)00272-1
PMid:10815714

 

9. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8:53.
https://doi.org/10.1186/s40537-021-00444-8
PMid:33816053 PMCid:PMC8010506

 

10. Bulatova G, Kusnoto B, Grace V, Tsay TP, Avenetti DM, Sanchez FJC. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthod Craniofac Res. 2021;24:37-42.
https://doi.org/10.1111/ocr.12542
PMid:34842346

 

11. Kim J, Kim I, Kim Y, Kim M, Cho J, Hong M, et al. Accuracy of automated identification of lateral cephalometric landmarks using cascade convolutional neural networks on lateral cephalograms from nationwide multi-centres. Orthod Craniofac Res. 2021;24:59-67.
https://doi.org/10.1111/ocr.12493

 

12. Milam ME, Koo CW. The current status and future of FDA-approved artificial intelligence tools in chest radiology in the United States. Clin Radiol. 2023;78:115-22.
https://doi.org/10.1016/j.crad.2022.08.135
PMid:36180271

 

13. Albalawi F, Alamoud KA. Trends and Application of Artificial Intelligence Technology in Orthodontic Diagnosis and Treatment Planning-A Review. Appl Sci. 2022;12.
https://doi.org/10.3390/app122211864

 

14. Kazimierczak N, Kazimierczak W, Serafin Z, Nowicki P, Nożewski J, Janiszewska-Olszowska J. AI in Orthodontics: Revolutionizing Diagnostics and Treatment Planning. J Clin Med. 2024;13:344.
https://doi.org/10.20944/preprints202312.1259.v1

PMid:38256478 PMCid:PMC10816993

 

15. Allareddy V, Rengasamy Venugopalan S, Nalliah RP, Caplin JL, Lee MK, Allareddy V. Orthodontics in the era of big data analytics. Orthod Craniofacial Res. 2019;22:8-13.
https://doi.org/10.1111/ocr.12279
PMid:31074158

 

16. Khanagar SB, Al-Ehaideb A, Vishwanathaiah S, Maganur PC, Patil S, Naik S, et al. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making - A systematic review. J Dent Sci. 2021;16:482-92.
https://doi.org/10.1016/j.jds.2020.05.022
PMid:33384838 PMCid:PMC7770284

 

17. Moon JH, Kim MG, Hwang HW, Cho SJ, Donatelli RE, Lee SJ. Evaluation of an individualized facial growth prediction model based on the multivariate partial least squares method. Angle Orthod. 2022;92:705-13.
https://doi.org/10.2319/110121-807.1
PMid:35980769 PMCid:PMC9598844

 

18. Wen YF, Wong HM, McGrath CP. Developmental shape changes in facial morphology: Geometric morphometric analyses based on a prospective, population-based, Chinese cohort in Hong Kong. PLoS One. 2019;14:e0218542.
https://doi.org/10.1371/journal.pone.0218542
PMid:31252428 PMCid:PMC6599092

 

19. Bral A, Olate S, Zaror C, Mensink G, Coscia G, Mommaerts MY. A prospective study of soft-and hard-tissue changes after mandibular advancement surgery: midline changes in the chin area. Am J Orthod Dentofac Orthop. 2020;157:662-7.
https://doi.org/10.1016/j.ajodo.2019.05.022
PMid:32354439

 

20. Lim YN, Yang BE, Byun SH, Yi SM, On SW, Park IY. Three-dimensional digital image analysis of skeletal and soft tissue points A and B after orthodontic treatment with premolar extraction in bimaxillary protrusive patients. Biology (Basel). 2022;11:381.
https://doi.org/10.3390/biology11030381
PMid:35336755 PMCid:PMC8945223

 

21. McGrath TA, Alabousi M, Skidmore B, Korevaar DA, Bossuyt PMM, Moher D, et al. Recommendations for reporting of systematic reviews and meta-analyses of diagnostic test accuracy: a systematic review. Syst Rev. 2017;6:194.
https://doi.org/10.1186/s13643-017-0590-8
PMid:29017574 PMCid:PMC5633882

 

22. Lu CH, Ko EWC, Liu L. Improving the video imaging prediction of postsurgical facial profiles with an artificial neural network. J Dent Sci 2009;4:118-29.
https://doi.org/10.1016/S1991-7902(09)60017-9

 

23. Ma L, Xiao D, Kim D, Lian C, Kuang T, Liu Q, et al. Simulation of Postoperative Facial Appearances via Geometric Deep Learning for Efficient Orthognathic Surgical Planning. IEEE Trans Med Imaging. 2023;42:336-45.
https://doi.org/10.1109/TMI.2022.3180078
PMid:35657829 PMCid:PMC10037541

 

24. ter Horst R, van Weert H, Loonen T, Bergé S, Vinayahalingam S, Baan F, et al. Three-dimensional virtual planning in mandibular advancement surgery: Soft tissue prediction based on deep learning. J Cranio-Maxillofacial Surg. 2021;49:775-82.
https://doi.org/10.1016/j.jcms.2021.04.001
PMid:33941437

 

25. Knoops PGM, Papaioannou A, Borghi A, Breakey RWF, Wilson AT, Jeelani O, et al. A machine learning framework for automated diagnosis and computer-assisted planning in plastic and reconstructive surgery. Sci Rep. 2019;9:1-12.
https://doi.org/10.1038/s41598-019-49506-1
PMid:31537815 PMCid:PMC6753131

 

26. Tanikawa C, Yamashiro T. Development of novel artificial intelligence systems to predict facial morphology after orthognathic surgery and orthodontic treatment in Japanese patients. Sci Rep. 2021;11:15853.
https://doi.org/10.1038/s41598-021-95002-w
PMid:34349151 PMCid:PMC8339122

 

27. Ali R, Lei R, Shi H, Xu J. Cranio-maxillofacial post-operative face prediction by deep spatial multiband VGG-NET CNN. Am J Transl Res. 2022;14:2527-39.

PMid:35559377 PMCid:PMC9091107

 

28. Lampen N, Kim D, Fang X, Xu X, Kuang T, Deng HH, et al. Deep learning for biomechanical modeling of facial tissue deformation in orthognathic surgical planning. Int J Comput Assist Radiol Surg. 2022;17:945-52.
https://doi.org/10.1007/s11548-022-02596-1
PMid:35362849 PMCid:PMC10348467

 

29. Ma L, Kim D, Lian C, Xiao D, Kuang T, Liu Q, et al. Deep Simulation of Facial Appearance Changes Following Craniomaxillofacial Bony Movements in Orthognathic Surgical Planning. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2021;12904 LNCS:459-68.
https://doi.org/10.1007/978-3-030-87202-1_44
PMid:34966912 PMCid:PMC8713535

 

30. Yuan P, Mai H, Li J, Ho DC-Y, Lai Y, Liu S, et al. Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning. Int J Comput Assist Radiol Surg. 2017;12:2129-43.
https://doi.org/10.1007/s11548-017-1585-6
PMid:28432489 PMCid:PMC5664166

 

31. Ullah R, Turner PJ, Khambay BS. Accuracy of three-dimensional soft tissue predictions in orthognathic surgery after Le Fort I advancement osteotomies. Br J Oral Maxillofac Surg. 2015;53:153-7.
https://doi.org/10.1016/j.bjoms.2014.11.001
PMid:25432431

 

32. Kim D, Kuang T, Rodrigues YL, Gateno J, Shen SGF, Wang X, et al. A new approach of predicting facial changes following orthognathic surgery using realistic lip sliding effect. Med Image Comput Comput Assist Interv. 2019:11768:336-344.
https://doi.org/10.1007/978-3-030-32254-0_38
PMid:31886472 PMCid:PMC6934101

 

33. Tonutti M, Gras G, Yang GZ. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery. Artif Intell Med. 2017;80:39-47.
https://doi.org/10.1016/j.artmed.2017.07.004
PMid:28750949

 

34. Ryu JY, Chung HY, Choi KY. Potential role of artificial intelligence in craniofacial surgery. Arch Craniofacial Surg. 2021;22:223.
https://doi.org/10.7181/acfs.2021.00507
PMid:34732033 PMCid:PMC8568494

 

35. Cheng M, Zhang X, Wang J, Yang Y, Li M, Zhao H, et al. Prediction of orthognathic surgery plan from 3D cephalometric analysis via deep learning. BMC Oral Health. 2023;23:1-11.
https://doi.org/10.1186/s12903-023-02844-z
PMid:36934241 PMCid:PMC10024836

 

36. Schwendicke F, Singh T, Lee JH, Gaudin R, Chaurasia A, Wiegand T, et al. Artificial intelligence in dental research: Checklist for authors, reviewers, readers. J Dent. 2021;107:103610.
https://doi.org/10.1016/j.jdent.2021.103610
PMid:33631303

 

37. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268:70.
https://doi.org/10.1097/SLA.0000000000002693
PMid:29389679 PMCid:PMC5995666

 

38. Abdoullaev A. Artificial intelligence vs machine learning vs artificial neural networks vs deep learning 2021. https://www.bbntimes.com/science/artificial-intelligence-vs-machine-learning-vs-artificial-neural-networks-vs-deep-learning (accessed February 23, 2024).

 

39. Singh A. Artificial Neural Networks 2018. https://msatechnosoft.in/blog/artificial-neural-network-types-feed-forward-feedback-structure-perceptron-machine-learning-applications/ (accessed February 23, 2024).

 

40. Deshpande A. A Beginner's Guide To Understanding Convolutional Neural Networks 2016. https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/ (accessed February 23, 2024).