Abdulkhaliq AG, Najim BA. Effect of Incorporating Date Seeds Microparticles on Compressive Strength and Microhardness of Conventional Glass Ionomer (an In Vitro Study). J Clin Exp Dent. 2024;16(7):e826-35.

 

doi:10.4317/jced.61603

https://doi.org/10.4317/jced.61603

_____

 

References

1. Menezes-Silva R, Cabral RN, Pascotto RC, Borges AFS, Martins CC, Navarro MF de L, et al. Mechanical and optical properties of conventional restorative glass-ionomer cements-a systematic review. J Appl Oral Sci. 2019;27.
https://doi.org/10.1590/1678-7757-2018-0357
PMid:30810640 PMCid:PMC6382318

 

2. Lohbauer U, Walker J, Nikolaenko S, Werner J, Clare A, Petschelt A, et al. Reactive fibre reinforced glass ionomer cements. Biomaterials. 2003;24(17):2901-7.
https://doi.org/10.1016/S0142-9612(03)00130-3
PMid:12742729

 

3. Amin F, Rahman S, Khurshid Z, Zafar MS, Sefat F, Kumar N. Effect of nanostructures on the properties of glass ionomer dental restoratives/cements: A comprehensive narrative review. Materials (Basel). 2021;14(21):6260.
https://doi.org/10.3390/ma14216260
PMid:34771787 PMCid:PMC8584882

 

4. Nicholson JW. Maturation processes in glass-ionomer dental cements. Acta Biomater Odontol Scand. 2018;4(1):63-71.
https://doi.org/10.1080/23337931.2018.1497492
PMid:30083577 PMCid:PMC6070969

 

5. Sidhu SK, Schmalz G. The biocompatibility of glass-ionomer cement materials. A status report for the American Journal of Dentistry. Am J Dent. 2001;14(6):387-96.

 

6. Al-Taee L, Deb S, Banerjee A. An in vitro assessment of the physical properties of manually-mixed and encapsulated glass-ionomer cements. BDJ open. 2020;6(1):12.
https://doi.org/10.1038/s41405-020-0040-x
PMid:32821430 PMCid:PMC7419565

 

7. Jabouri MR Al, Abdul-Ameer ZM. X-ray diffraction and biocompatibility of glass ionomer cement reinforced by different ratios of synthetic hydroxyapatite. J Baghdad Coll Dent. 2013;25(3):62-8.
https://doi.org/10.12816/0014999

 

8. Collado-González M, Pecci-Lloret MR, Tomás-Catalá CJ, García-Bernal D, Oñate-Sánchez RE, Llena C, et al. Thermo-setting glass ionomer cements promote variable biological responses of human dental pulp stem cells. Dent Mater. 2018;34(6):932-43.
https://doi.org/10.1016/j.dental.2018.03.015
PMid:29650250

 

9. Kent BE, Lewis BG WA. I. The Preparation of Novel Fluoroaluminosilicate Glasses High in Fluorine; B. Kent et al. J Dent Res. 1979;1607-19.
https://doi.org/10.1177/00220345790580061001
PMid:286706

 

10. Nicholson JW, Sidhu SK, Czarnecka B. Enhancing the mechanical properties of glass-ionomer dental cements: a review. Materials (Basel). 2020;13(11):2510.
https://doi.org/10.3390/ma13112510
PMid:32486416 PMCid:PMC7321445

 

11. Soygun K, Soygun A, Dogan MC. The effects of chitosan addition to glass ionomer cement on microhardness and surface roughness. J Appl Biomater Funct Mater. 2021;19:2280800021989706.
https://doi.org/10.1177/2280800021989706
PMid:33784189

 

12. Hasan ZR, Al-Hasani NR, Malallah O. Color stability of nano resin-modified glass Ionomer restorative cement after acidic and basic medications challenge. J Baghdad Coll Dent. 2023;35(4):10-9.
https://doi.org/10.26477/jbcd.v35i4.3505

 

13. Mustafa HA, Soares AP, Paris S, Elhennawy K, Zaslansky P. The forgotten merits of GIC restorations: A systematic review. Clin Oral Investig. 2020;24:2189-201.
https://doi.org/10.1007/s00784-020-03334-0
PMid:32514903

 

14. Moraes JF, de Moraes TG, Nunes FRS, Carvalho EM, Nunes GS, Carvalho CN, et al. Formation of hydroxyapatite nanoprecursors by the addition of bioactive particles in resin-modified glass ionomer cements. Int J Adhes Adhes. 2021;110:102933.
https://doi.org/10.1016/j.ijadhadh.2021.102933

 

15. Agarwal P, Nayak R, Upadhya PN, Ginjupalli K, Gupta L. Evaluation of properties of glass ionomer cement reinforced with zinc oxide nanoparticles-An in vitro study. Mater Today Proc. 2018;5(8):16065-72.
https://doi.org/10.1016/j.matpr.2018.05.088

 

16. Bao X, Garoushi SK, Liu F, Lassila LLJ, Vallittu PK, He J. Enhancing mechanical properties of glass ionomer cements with basalt fibers. Silicon. 2020;12:1975-83.
https://doi.org/10.1007/s12633-019-00312-4

 

17. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J. Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renew Sustain Energy Rev. 2016;54:533-49.
https://doi.org/10.1016/j.rser.2015.10.037

 

18. Babu JS, Krishnamoorthi T, Vijayasharathi N, Vignesh S, Yasminebegum A, Anusha M. Wear performance and surface roughness measurement of epoxy based bio composites reinforced with date seed powder and coconut shell powder. Mater Today Proc. 2023;

 

19. Fouly A, Alnaser IA, Assaifan AK, Abdo HS. Evaluating the performance of 3D-printed PLA reinforced with date pit particles for its suitability as an acetabular liner in artificial hip joints. Polymers (Basel). 2022;14(16):3321.
https://doi.org/10.3390/polym14163321
PMid:36015578 PMCid:PMC9416500

 

20. Alawad MNJ, Fattah KA. Superior fracture-seal material using crushed date palm seeds for oil and gas well drilling operations. J King Saud Univ Sci. 2019;31(1):97-103.
https://doi.org/10.1016/j.jksues.2017.01.003

 

21. Nwogu CN, Nwaiwu U, Udo VU, Nwosu OJ, Hart CE. Effect of date seed granules on the mechanical properties of Glass fibre reinforced epoxy composite. Clean Mater. 2022;6:100160.
https://doi.org/10.1016/j.clema.2022.100160

 

22. Elkhouly HI, Rushdi MA, Abdel-Magied RK. Eco-friendly date-seed nanofillers for polyethylene terephthalate composite reinforcement. Mater Res Express. 2020;7(2):25101.
https://doi.org/10.1088/2053-1591/ab6daa

 

23. Ahmed Gasmelseed Awad M, Mohammed Al Olayan E, Mohamed Yehia H, Mustafa Osman Ortashi K, Salama Mohamed Ali H, Fawzy Elkhadragy M. (12) United States Patent45) Date of Patent: (54) (71) (72) (73) (*) (21) (22) (51) (52) METHOD OF PREPARING DATE PALM SEED NANOPARTICLES Applicant. 2017;1(12). Available from: www.e.

 

24. Dentistry-water-based cements Part ISO. Powder/liquid acid-base cements. ISO. 1AD;9911-7.

 

25. Eisenburger M, Addy M, Hughes JA, Shellis RP. Effect of time on the remineralisation of enamel by synthetic saliva after citric acid erosion. Caries Res. 2001;35(3):211-5.
https://doi.org/10.1159/000047458
PMid:11385202

 

26. Hershkovitz F, Cohen O, Zilberman U. Microhardness of three glass-ionomer cements during setting and up to 15 days in vitro, and after 5 to 10 years in vivo. Quintessence Int. 2020;51(6):440-6.

 

27. Ruengrungsom C, Burrow MF, Parashos P, Palamara JEA. Comprehensive characterisation of flexural mechanical properties and a new classification for porosity of 11 contemporary ion-leaching dental restorative materials. J Mech Behav Biomed Mater. 2021;121:104615.
https://doi.org/10.1016/j.jmbbm.2021.104615
PMid:34126510

 

28. Abu-Jdayil B, Mourad AHI, Hussain A, Al Abdallah H. Thermal insulation and mechanical characteristics of polyester filled with date seed wastes. Constr Build Mater. 2022;315:125805.
https://doi.org/10.1016/j.conbuildmat.2021.125805

 

29. Sismanoglu S, Tayfun U, Kanbur Y. Effect of alkali and silane surface treatments on the mechanical and physical behaviors of date palm seed-filled thermoplastic polyurethane eco-composites. J Thermoplast Compos Mater. 2022;35(4):487-502.
https://doi.org/10.1177/0892705719890904

 

30. Milosevic M, Valášek P, Ruggiero A. Tribology of natural fibers composite materials: An overview. Lubricants. 2020;8(4):42.
https://doi.org/10.3390/lubricants8040042

 

31. Petri DFS, Donegá J, Benassi AM, Bocangel JAJS. Preliminary study on chitosan modified glass ionomer restoratives. Dent Mater. 2007;23(8):1004-10.
https://doi.org/10.1016/j.dental.2006.06.038
PMid:17097726

 

32. Chiessi E, Paradossi G, Venanzi M, Pispisa B. Copper complexes immobilized to chitosan. J Inorg Biochem. 1992;46(2):109-18.
https://doi.org/10.1016/0162-0134(92)80014-M
PMid:1326023

 

33. Monteiro Jr OAC, Airoldi C. Some thermodynamic data on copper-chitin and copper-chitosan biopolymer interactions. J Colloid Interface Sci. 1999;212(2):212-9.
https://doi.org/10.1006/jcis.1998.6063
PMid:10092348

 

34. Moshaverinia M, Navas A, Jahedmanesh N, Shah KC, Moshaverinia A, Ansari S. Comparative evaluation of the physical properties of a reinforced glass ionomer dental restorative material. J Prosthet Dent. 2019;122(2):154-9.
https://doi.org/10.1016/j.prosdent.2019.03.012
PMid:31326149

 

35. Mohammadi N, Fattah Z, Borazjani LV. Nano-cellulose reinforced glass ionomer restorations: an in vitro study. Int Dent J. 2023;73(2):243-50.
https://doi.org/10.1016/j.identj.2022.07.013
PMid:36085100 PMCid:PMC10023591

 

36. Arafa SK, Sherief DI, Nassif MS. Effect of aging on mechanical and antibacterial properties of fluorinated graphene reinforced glass ionomer: In vitro study. J Mech Behav Biomed Mater. 2023;142:105803.
https://doi.org/10.1016/j.jmbbm.2023.105803
PMid:37031564

 

37. Garoushi S, He J, Obradovic J, Fardim P, Vallittu PK, Lassila L. Incorporation of cellulose fiber in glass ionomer cement. Eur J Oral Sci. 2020;128(1):81-8.
https://doi.org/10.1111/eos.12668
PMid:31994247

 

38. Sharafeddin F, Jowkar Z, Bahrani S. Comparison between the effect of adding microhydroxyapatite and chitosan on surface roughness and Microhardness of resin modified and conventional glass ionomer cements. J Clin Exp Dent. 2021;13(8):e737.
https://doi.org/10.4317/jced.55996
PMid:34512911 PMCid:PMC8412805

 

39. Saran R, Upadhya NP, Ginjupalli K, Amalan A, Rao B, Kumar S. Effect on physical and mechanical properties of conventional glass ionomer luting cements by incorporation of all-ceramic additives: An in vitro study. Int J Dent. 2020;2020.
https://doi.org/10.1155/2020/8896225
PMid:33061975 PMCid:PMC7545438

 

40. Kheur M, Kantharia N, Iakha T, Kheur S, Husain NAH, Özcan M. Evaluation of mechanical and adhesion properties of glass ionomer cement incorporating nano-sized hydroxyapatite particles. Odontology. 2020;108(1):66-73.
https://doi.org/10.1007/s10266-019-00427-5
PMid:31028514

 

41. Yli-Urpo H, Lassila LVJ, Närhi T, Vallittu PK. Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass. Dent Mater. 2005;21(3):201-9.
https://doi.org/10.1016/j.dental.2004.03.006
PMid:15705426

 

42. Ana ID, Matsuya S, Ohta M, Ishikawa K. Effects of added bioactive glass on the setting and mechanical properties of resin-modified glass ionomer cement. Biomaterials. 2003;24(18):3061-7.
https://doi.org/10.1016/S0142-9612(03)00151-0
PMid:12895578

 

43. De Caluwé T, Vercruysse CWJ, Ladik I, Convents R, Declercq H, Martens LC, et al. Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility. Dent Mater. 2017;33(4):e186-203.
https://doi.org/10.1016/j.dental.2017.01.007
PMid:28196604

 

44. Aref NS. Sesame oil (sesamum indicum L.) as a new challenge for reinforcement of conventional glass ionomer cement, could it Be? Int J Dent. 2021;2021.
https://doi.org/10.1155/2021/5516517
PMid:33824660 PMCid:PMC8007341

 

45. Callister Jr WD. Materials science and engineering an introduction. 2007.

 

46. Melo T, De Oliveira IR, Brandim AS, Soares LES. Properties of zirconia-containing glass-ionomer cement. Cerâmica. 2019;65:394-9.
https://doi.org/10.1590/0366-69132019653752678

 

47. GJ M. Glass ionomers: a review of their current status. Oper Dent. 1999;24:115-24.

 

48. Bao X, Liu F, He J. Mechanical properties and water-aging resistance of glass ionomer cements reinforced with 3-aminopropyltriethoxysilane treated basalt fibers. J Mech Behav Biomed Mater. 2021;116:104369.
https://doi.org/10.1016/j.jmbbm.2021.104369
PMid:33545418

 

49. Bresciani E, Barata T de JE, Fagundes TC, Adachi A, Terrin MM, Navarro MF de L. Compressive and diametral tensile strength of glass ionomer cements. J Appl oral Sci. 2004;12:344-8.
https://doi.org/10.1590/S1678-77572004000400017
PMid:20976409

 

50. Crisp S, Lewis BG, Wilson AD. Characterization of glass-ionomer cements 1. Long term hardness and compressive strength. J Dent. 1976;4(4):162-6.
https://doi.org/10.1016/0300-5712(76)90025-7
PMid:1065637

 

51. Mitra SB, Kedrowski BL. Long-term mechanical properties of glass ionomers. Dent Mater. 1994;10(2):78-82.
https://doi.org/10.1016/0109-5641(94)90044-2
PMid:7758852

 

52. Pearson GJ, Atkinson AS. Long-term flexural strength, of glass ionomer cements. Biomaterials. 1991;12(7):658-60.
https://doi.org/10.1016/0142-9612(91)90113-O
PMid:1742410

 

53. Williams JA, Billington RW. Changes in compressive strength of glass ionomer restorative materials with respect to time periods of 24 h to 4 months. J Oral Rehabil. 1991;18(2):163-8.
https://doi.org/10.1111/j.1365-2842.1991.tb00044.x
PMid:2037939

 

54. Jowkar Z, Jowkar M, Shafiei F. Mechanical and dentin bond strength properties of the nanosilver enriched glass ionomer cement. J Clin Exp Dent. 2019;11(3):e275.
https://doi.org/10.4317/jced.55522
PMid:31001399 PMCid:PMC6461736

 

55. Wang Y, Darvell BW. Hertzian load-bearing capacity of a ceramic-reinforced glass ionomer cement stored wet and dry. Dent Mater. 2009;25(8):952-5.
https://doi.org/10.1016/j.dental.2009.02.006
PMid:19327820

 

56. Shen C, Grimaudo N. Effect of hydration on the biaxial flexural strength of a glass ionomer cement. Dent Mater. 1994;10(3):190-5.
https://doi.org/10.1016/0109-5641(94)90031-0
PMid:7758863

 

57. Ikegami A. Hydration of polyacids. Biopolym Orig Res Biomol. 1968;6(3):431-40.
https://doi.org/10.1002/bip.1968.360060314
PMid:5641940

 

58. Garoushi S, Vallittu PK, Lassila L. Characterization of fluoride releasing restorative dental materials. Dent Mater J. 2018;37(2):293-300.
https://doi.org/10.4012/dmj.2017-161
PMid:29279547

 

59. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. 2000;16(2):129-38.
https://doi.org/10.1016/S0109-5641(99)00093-7
PMid:11203534

 

60. Nagaishi C, Abe Y, Imataki R, Nishimura T, Kawai S, Shinonaga Y, et al. Influence on mechanical properties and fluoride ion release when powdery cellulose nanofibers are added to a conventional glass-ionomer restorative. J Osaka Dent Univ. 2021;55(1):137-47.

 

61. Lad PP, Kamath M, Tarale K, Kusugal PB. Practical clinical considerations of luting cements: A review. J Int oral Heal JIOH. 2014;6(1):116.

 

62. Gemalmaz D, Yoruc B, Ozcan M, Alkumru HN. Effect of early water contact on solubility of glass ionomer luting cements. J Prosthet Dent. 1998;80(4):474-8.
https://doi.org/10.1016/S0022-3913(98)70014-9
PMid:9791796

 

63. España JM, Samper MD, Fages E, Sánchez-Nácher L, Balart R. Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polym Compos. 2013;34(3):376-81.
https://doi.org/10.1002/pc.22421

 

64. Dawood SH, Kandil MM, El-Korashy DI. Effect of Aging on Compressive Strength, Fluoride Release, Water Sorption, and Solubility of Ceramic-reinforced Glass Ionomers: An In Vitro Study. J Contemp Dent. 2019;9(2):78-84.
https://doi.org/10.5005/jp-journals-10031-1260

 

65. Elshenawy EA, El-Ebiary MA, Kenawy ER, El-Olimy GA. Modification of glass-ionomer cement properties by quaternized chitosan-coated nanoparticles. Odontology. 2023;111(2):328-41.
https://doi.org/10.1007/s10266-022-00738-0
PMid:36070157 PMCid:PMC10020264

 

66. De Moor RJG, Verbeeck RMH. Changes in surface hardness of conventional restorative glass ionomer cements. Biomaterials. 1998;19(24):2269-75.
https://doi.org/10.1016/S0142-9612(98)00135-5
PMid:9884039

 

67. Yap AU, Mudambi S, Chew CL, Neo JC. Mechanical properties of an improved visible light-cured resin-modified glass ionomer cement. Oper Dent. 2001;26(3):295-301.

 

68. Ellakuria J, Triana R, Mınguez N, Soler I, Ibaseta G, Maza J, et al. Effect of one-year water storage on the surface microhardness of resin-modified versus conventional glass-ionomer cements. Dent Mater. 2003;19(4):286-90.
https://doi.org/10.1016/S0109-5641(02)00042-8
PMid:12686292

 

69. Mahmood S, Shahid S, Billington R. Do glass ionomer cements mature appreciably? A critical review. Int J Med Dent. 2022;26(2).

 

70. Moberg M, Brewster J, Nicholson J, Roberts H. Physical property investigation of contemporary glass ionomer and resin-modified glass ionomer restorative materials. Clin Oral Investig. 2019;23:1295-308.
https://doi.org/10.1007/s00784-018-2554-3
PMid:29998443

 

71. Mulder R, Mohamed N. Variation of powder/liquid ratios of capsulated glass-ionomer materials. NZ Dent J. 2019;115(2):47-56.

 

72. Zoergiebel J, Ilie N. An in vitro study on the maturation of conventional glass ionomer cements and their interface to dentin. Acta Biomater. 2013;9(12):9529-37.
https://doi.org/10.1016/j.actbio.2013.08.010
PMid:23954325

 

73. Silva RC, Zuanon ACC, Esberard RR, Candido MSM, Machado JS. In vitro microhardness of glass ionomer cements. J Mater Sci Mater Med. 2007;18:139-42.
https://doi.org/10.1007/s10856-006-0672-y
PMid:17200824

 

74. Benetti AR, Jacobsen J, Lehnhoff B, Momsen NCR, Okhrimenko D V, Telling MTF, et al. How mobile are protons in the structure of dental glass ionomer cements? Sci Rep. 2015;5(1):8972.
https://doi.org/10.1038/srep08972
PMid:25754555 PMCid:PMC4354011

 

75. Berg MC, Benetti AR, Telling MTF, Seydel T, Yu D, Daemen LL, et al. Nanoscale mobility of aqueous polyacrylic acid in dental restorative cements. ACS Appl Mater Interfaces. 2018;10(12):9904-15.
https://doi.org/10.1021/acsami.7b15735
PMid:29504390

 

76. Cefaly DFG, Mello LLCP de, Wang L, Lauris JRP, D'Alpino PHP. Effect of light curing unit on resin-modified glass-ionomer cements: a microhardness assessment. J Appl Oral Sci. 2009;17:150-4.
https://doi.org/10.1590/S1678-77572009000300004
PMid:19466242 PMCid:PMC4399523

 

77. Okada K, Tosaki S, Hirota K, Hume WR. Surface hardness change of restorative filling materials stored in saliva. Dent Mater. 2001;17(1):34-9.
https://doi.org/10.1016/S0109-5641(00)00053-1
PMid:11124411

 

78. Crisp S, Wilson AD. Reactions in glass ionomer cements: V. Effect of incorporating tartaric acid in the cement liquid. J Dent Res. 1976;55(6):1023-31.
https://doi.org/10.1177/00220345760550060401
PMid:187629